LEP searches in R-parity Violation scenarios

Theodora D. Papadopoulou NTU Athens

July 25 - Amsterdam ICHEP 2002

- Introduction
- **RPV Superpotential**
- Decays via trilinear RPV Couplings
- Search strategies
- Review of Updated Analyses Results
- Exclusion plots and limits
- Summary
- Conclusion
- As an Epilogue

- What is **Rp** and why go beyond ?
- a discrete multiplicative symmetry in SUSY models connected to matter parity

$$R_p = (-1)^{2S+3B+L}$$

 $R_p = 1$ for SM particles

 $R_p = -1$ for SUSY particles

- **o** SUSY particles produced in pairs
- o LSP is stable
- о experimental signature of SUSY Ет miss
 - → fast proton decay is suppressed

- **o single sparticle production** via a $\Delta L \neq 0$ or a $\Delta B \neq 0$ operator
- o Unstable LSP !
- o Signature of multilepton or multijet events in excess
- → fast proton decay is suppressed if Lepton and Baryon number Violating Couplings are not simultaneously present

Decay topologies

 $9 \lambda_{ijk} + 27 \lambda'_{ijk} + 9 \lambda''_{ijk} = 45$ new couplings Hierarchies in RpV Couplings expected (as for Yukawa Couplings generating fermion masses)

direct decays

• indirect decays

Decay Length of $\widetilde{\chi}_1^0$

$$L \approx \frac{1}{\lambda^2} \left(\frac{m_{\tilde{f}}}{100 GeV} \right)^4 \left(\frac{1 GeV}{m_{\tilde{\chi}}} \right)^5$$

• LEP analyses are sensitive only if the LSP has a negligible lifetime (L < 1 cm)

$$\succ$$
 $m_{\tilde{x}} > 10 \ GeV$

$$\sim 10^{-5} < \, \lambda \, < \, 10^{-2}$$
 up to 1

Displaced Vertices $< \lambda <$ **indirect SM bounds**

- > Suppose one Coupling $\lambda_{ijk}(\gamma) \neq 0$
- > Consider that many channels have to be combined
- > Optimize Signal selection on various topologies
 - --with sequential cuts : ALEPH, OPAL, L3, DELPHI $(LL\overline{E})$
 - --using lepton identification and lepton isolation criteria (LL \overline{E} , LQ $\overline{D})$
 - -- with neural network methods : **DELPHI** $(\overline{U} \ \overline{D} \ \overline{D})$
 - -- using jet algorithm, b tagging $(LQ\overline{D}, \overline{U} \overline{D} \overline{D})$
- Calculate signal reconstruction efficiency
 - -- optimization on different mass combinations depending on the decays and the kinematics
- If no significant deviation from the SM, set 95 % CL limits on:
 *cross-sections * couplings and sparticle masses * exclusion plots in the MSSM regions

Minimal SUSY scenario :

- Topologies predicted in a Constrained MSSM =>
- gaugino mass unification ($M_1 \approx 0.5 M_2$) at EW scale
- Mass universality at GUT scale => μ , tan β , m_{θ}
- Trilinear terms are set to $0 => A_{b,t,\tau} = 0$
- Mixing angles for stop and sbottom => $\phi_{\widetilde{\tau}}$, $\phi_{\widetilde{\kappa}}$ **Bounds on RpV Couplings at EW scale:** $\lambda : \sim 5.10^{-2}$ $\lambda' : \sim 2.10^{-2}$ (131) up to 0.56 (232)
- λ'' : ~ 0.5 up to ~1.23 (except $\lambda''_{112} = \lambda''_{121} \sim O(10^{-9}), \lambda''_{131} = \lambda''_{113} = 10^{-4}$)

8

(for a sparticle mass of 100 GeV/c^2)

CMSSM

LEP 2 : 5 years of data taking
 E_{cm} up to 209 GeV
 ~ 714 pb⁻¹ per experiment

Year	E _{cm}	<l exp=""></l>					
	GeV	pb ⁻¹					
1996	161-172	~ 20					
1997	183	~ 55					
1998	189	~170					
1999	192-202	~230					
2000	204-209	~227					

- Backgrounds :
- * Four fermions (*ZZW*⁺*W*⁻) *ff*(γ) γγ

• Signal : generated using SUSYGEN 2.2 (3.0)

No evidence for a significant signal observed in all the RpV searches MANY LIMITS (at 95 %) are derived

Single sneutrino production

Gaugino pair production

• Final states

	$ m LLar{ m E}$	$LQ\bar{D}$	ŪDD
$\widetilde{\chi}^{0}\widetilde{\chi}^{0}$	4 l+ ₽	1, 2l + 4j + E 2l + 4i	6j
$\widetilde{\chi}^{\pm}~\widetilde{\chi}^{\pm}$ (dir.)	2, 4, 6l + E	1, 2l + 4j 1, 2l + 4j + E	6j
$\widetilde{\chi}^{\pm}$ $\widetilde{\chi}^{\pm}$ (ind.)	$ \begin{aligned} &\widetilde{\chi}^{0}\widetilde{\chi}^{0} + WW \\ &\geq 4l + nj + \!$	$ \begin{split} \widetilde{\chi}^0 \widetilde{\chi}^0 + WW \\ \geq 4j + nl + \not \!$	$\begin{array}{l} \widetilde{\chi}^{0}\widetilde{\chi}^{0} + WW \\ \geq 6j + nl \end{array}$

• $\widetilde{\chi}^{\pm}$ indirect decay is the dominant decay channel in almost all the MSSM parameter space

• Limits in MSSM parameter space

DELPHI

NEW

• Mass limits at 95 % CL in GeV/c²

		λ	<u>λ΄</u>	<u>λ΄΄</u>
$\widetilde{\gamma}_{1}^{0}$	L	40.2		39.9
	D	39.5		38.0
$\widetilde{\chi}^0_2$]	L	84.0	—	80.0
$\widetilde{\chi}^0_3$]	L	107.2	_	107.2
$\widetilde{\boldsymbol{\gamma}}^{\pm}$	4	103	103	103
	D	103		102.5
]	L	103.0		102.7

ICHEP 2002

Squark pair production

ICHEP 2002

Single top production

- Analysis with neural network method
- b tagging used

$$\sigma_{\text{upper limit}} = 0.11 \ pb$$

σ upper limit at 95 % CL)

20

ALEPH PRELIMINARY

production cross-section of χ_1 vrs mass in all μ , all M₂ tan β (2-4), m₀(200-500) GeV/c²

da.	
	0000

New lower mass Limits (GeV/c²)

sfermion	λ (dd)		λ' (dd)	λ″(dd)	λ (id)			$\lambda'(id) \lambda''(id)$)			
$\widetilde{e}_{R}(\widetilde{e}_{L})$	96	69	(89)	(89)	96	96	79	99	95	93	92	94	96	92
$\widetilde{\mu}_{R}(\widetilde{\mu}_{L})$	87	61	(74)	(81)(77)	86	96	87	92	90	90	87	85	86	87
$\widetilde{\tau}_{R}, (\widetilde{\tau}_{I})$	87	61	(74)	(76)	75	95	86	90	90	76	-	-	75	-
\widetilde{V}_e	100	95	90	90	99	98	99	95	98	91	88	88	99	_
$\widetilde{\nu}_{\mu}$	90	65	76	79 75	70	89	78	81	85	78	-	65	70	_
$\widetilde{\mathcal{V}}_{\tau}$	-	65	76	75	70	89	78	81	85	78	-	65	70	-
\widetilde{t} (\widetilde{t}_L)	-	-	-	(97)	_	(91) (92)		(85)		(71	.5)	(87)		
$\widetilde{b}_{I}(\widetilde{b}_{I})$	-	-	-	-	-	(90)			(80) (71		.5)	(78)		
$\widetilde{u}_{R}(\widetilde{u}_{L})$	_	-	-	-	(82.5) 80 (87)	_			- 79		(87)			
$\widetilde{d}_{R}(\widetilde{d}_{L})$	-	-	_	-	(77) 56 (86)	_				-	55 (86))	

- **RpV** has inspired new interesting scenarios of SUSY searches
- **RpC** and **RpV** are two complementary ways of SUSY searches
- Searches for SUSY with RpV performed by all LEP collaborations (ADLO) in ...many channels
- No evidence for SUSY with RpV so far at LEP
- Limits on SUSY particles and RpV Couplings are set at 95% CL
- Limits from RpV searches are comparable with the RpC ones!

..... Many papers and ... many searches on SUSY !

..... but there is NO evidence up to now

SUSY with **RpV**

predicts very clear signatures especially for couplingswith $\Delta L \neq 0$ $(LL\overline{E}, LQ\overline{D})$

towards future colliders !