

Oscar VIVES

- 3 families with identical gauge numbers ?
- Origin of the mass hierarchy ?

Intergenerational mixing?

MSSM fermion + sfermionmasses + mixings= 124 !!!!!

Minimal Supergravity

Canonical Kähler potential $K = \sum_i |\phi^i|^2$ and Superpotential

$$W = W^{hid}(\chi_k) + \left(\frac{\theta}{M}\right)^{\alpha(i,j)} H_a Q_{Li} q_{Rj}^c + \dots$$

with θ/M generate Yukawa structure. Scalar potential (F-terms):

$$V = e^{K} \left[\sum_{i} \left| \frac{\partial W}{\partial \phi_{i}} + \phi^{i*} W \right|^{2} - 3|W|^{2} \right]$$

with $F_{\phi_i} = -e^{K/2} (W_i^* + \phi_i W^*).$

after SUSY breaking in hidden sector $\langle W \rangle \simeq m_{3/2}$. Generic F-terms determined by $\langle \phi_i W^* \rangle = m_{3/2} \langle \phi_i \rangle \leq m_{3/2} M_{Pl}$

Assuming $F_{\theta} \simeq m_{3/2} \langle \theta \rangle$, trilinear couplings,

$$\begin{aligned} \mathbf{A}_{ij} Y_{ij} H_a \tilde{Q}_{Li} \tilde{q}_{Rj}^c &= \left(F^{\chi_k} \hat{K}_{\chi_k} Y^{ij} + F^m \partial_m Y^{ij} \right) H_a \tilde{Q}_{Li} \tilde{q}_{Rj}^c \\ &= \left(A_0 Y_{ij} + \alpha_{ij} m_{3/2} Y^{ij} \right) H_a \tilde{Q}_{Li} \tilde{q}_{Rj}^c \end{aligned}$$

Yukawa matrices as effective operators as powers of scalar vevs. Irrespective of the source of SUSY breaking

- Explain fermion masses and mixings in terms of a few fundamental parameters
- Off-diagonal entries small relative on-diagonal
- Approximate texture zeros: mixings in terms of masses

$$\frac{M}{m_3} = \begin{pmatrix} 0 & b \epsilon^3 & c \epsilon^3 \\ b' \epsilon^3 & d \epsilon^2 & a \epsilon^2 \\ f \epsilon^m & g \epsilon^n & 1 \end{pmatrix}$$

with $\epsilon_u \simeq 0.05$ and $\epsilon_d \simeq 0.15$

if $\epsilon = \langle \theta \rangle / M$ we obtain as trilinear

$$(Y^{A})_{ij} \equiv Y_{ij}A_{ij} = A_{0}Y_{ij} + Y_{33}m_{3/2} \begin{pmatrix} 0 & 3 \ b \ \epsilon^{3} & 4 \ c \ \epsilon^{4} \\ 3 \ b' \ \epsilon^{3} & 2 \ d \ \epsilon^{2} & 2 \ a \ \epsilon^{2} \\ m \ f \ \epsilon^{m} & n \ g \ \epsilon^{n} & 0 \end{pmatrix}$$

Non diagonal Trilinear couplings in SCKM \Rightarrow Left-Right FCNC

$$(\tilde{Y}^{A})_{31} = Y_{33} \ m_{3/2} \ m \ \epsilon^{m} + \dots \qquad (\tilde{Y}^{A})_{32} = Y_{33} \ m_{3/2} \ g \ n \ \epsilon^{n} + \dots$$
$$(\tilde{Y}^{A})_{21} = Y_{33} \ m_{3/2} \ (b' \ \epsilon^{3} + a \ \frac{b'}{d} \ g \ n \ \epsilon^{3+n} - a \ f \ m \ \epsilon^{2+m} + \dots)$$

FCNC and CP Phenomenology

- Soft breaking terms at high scale $\sim M_{GUT}$
- RGE evolution to electroweak scale.

1.- Diagonal elements receive large gaugino contribution $m_{\tilde{q}}^2 \simeq 6 \ m_{1/2}^2 + m_0^2 \simeq 19 \ m_{3/2}^2 = C_q \ m_{3/2}^2$ $m_{\tilde{l}}^2 \simeq 1.5 \ m_{1/2}^2 + m_0^2 \simeq 5.5 \ m_{3/2}^2 = C_l \ m_{3/2}^2$ 2.- Diagonal trilinear couplings receive large gaugino contribution and align with gaugino masses. Pure trilinear contributions unchanged in down but reduced in up $A_t \supset 0.25A_0, A_u \supset 0.60A_0$ $\downarrow \downarrow$ "String *CP* problem" and MI bounds

Mass Insertion limits

Mass Insertions

$$\left(\delta_A^f\right)_{ij} = \frac{(m_{\tilde{f}_A}^2)_{ij}}{m_{\tilde{f}}^2} \Rightarrow \left(\delta_{LR}^f\right)_{i\neq j} = \frac{v_f(\tilde{Y}_f^A)_{ij}}{C_f m_{3/2}^2}$$

Using $m_{\tilde{q}} \simeq 500 \text{ GeV} \Rightarrow m_{3/2} \simeq 120 \text{ GeV}.$

$$\left(\delta_{LR}^{d}\right)_{21} \simeq \frac{m_{3/2} \ m_{b}}{19 \ m_{3/2}^{2}} \left(b' \ \epsilon_{d}^{3} + a \ \frac{b'}{d} \ g \ n \ \epsilon_{d}^{3+n} - a \ f \ m \ \epsilon_{d}^{2+m}\right) \simeq$$

$$\left(b' \ \epsilon_{d} + a \ \frac{b'}{d} \ g \ n \ \epsilon_{d}^{1+n} - a \ f \ m \ \epsilon_{d}^{m}\right) \ 5 \times 10^{-5} \simeq \frac{b'}{2} \ 1.5 \times 10^{-5} + \dots$$

Sizeable contributions to $(\delta_{LR}^d)_{21}$ naturally expected. With Im $b' \neq 0$, (observable phase) large contribution to ε'/ε No strong constraints on unknown elements $m \geq 1$ and $n \geq 0$

$$\left(\delta_{LR}^d\right)_{32} \simeq \frac{m_{3/2} \ m_b \ g \ n \ \epsilon_d^n}{19 \ m_{3/2}^2} \simeq 2.2 \times 10^{-3} \ g \ n \ \epsilon_d^n$$

However minimal suppression in down $m_b/(19m_{3/2}) \lesssim 2 \times 10^{-3}$, with $m_{\tilde{q}} = 500$ GeV (smaller suppression a priori in up sector). Leptonic sector

$$\begin{split} (\delta^e_{LR})_{12} \simeq \frac{m_{3/2} \ m_{\tau}}{5.5 \ m_{3/2}^2} (b' \ \epsilon^3_d + a \ \frac{b'}{d} \ g \ n \ \epsilon^{3+n}_d - a \ f \ m \ \epsilon^{2+m}_d) \simeq \\ (b' \ + a \ \frac{b'}{d} \ g \ n \ \epsilon^n_d - a \ f \ m \ \epsilon^{m-1}_d) \ 8.7 \times 10^{-6} \end{split}$$

with $m_{\tilde{l}} = 280 \text{ GeV}$, $(m_{3/2} = 120 \text{ GeV})$, MI bound with photino,

$$(\delta^e_{LR})_{12} \le 7 \times 10^{-7} \left(\frac{280}{100}\right)^2 = 5.5 \times 10^{-6}$$

Requires larger sfermion masses: OK for $m_{3/2} = 170 \text{ GeV}$, corresponding to $m_{\tilde{q}} = 600 \text{ GeV}$

University of Oxford

MI limits

x	$\sqrt{\left \operatorname{Im}\left(\delta_{LR}^d\right)_{12}^2\right }$	$\sqrt{\left \operatorname{Re}\left(\delta_{LR}^d\right)_{13}^2\right }$	$\left \left(\delta_{LR}^l\right)_{12}\right $	$\left \left(\delta_{LR}^l\right)_{23}\right $
0.3	1.1×10^{-5}	1.3×10^{-2}	6.9×10^{-7}	8.7×10^{-3}
1.0	$2.0 imes 10^{-5}$	$1.6 imes 10^{-2}$	8.4×10^{-7}	1.0×10^{-2}
4.0	$6.3 imes 10^{-5}$	3.0×10^{-2}	1.9×10^{-6}	2.3×10^{-2}
	$\times (m_{\tilde{q}} (\mathrm{Ge}$	$\times (m_{\tilde{l}} \ (\text{GeV})/100)^2$		

x	$ \operatorname{Im}(\delta_{11}^d)_{LR} $	$ \mathrm{Im}(\delta_{11}^u)_{LR} $	$ \mathrm{Im}(\delta^d_{22})_{LR} $		
0.3	4.3×10^{-8}	4.3×10^{-8}	3.6×10^{-6}		
1	8.0×10^{-8}	$8.0 imes 10^{-8}$	6.7×10^{-6}		
3	1.8×10^{-7}	1.8×10^{-7}	1.6×10^{-5}		
$\times (m_{\tilde{l}} \; (\text{GeV})/100)$					

"String CP problem"

• Yukawa matrices contain $\mathcal{O}(1)$ *CP* violating phases (δ_{CKM}) Super CKM basis

$$V_{qL}^{\dagger}Y_qV_{qR} = D_i = \text{Diag}(h_1, h_2, h_3) \qquad \tilde{Y}_q^A = V_{qL}^{\dagger}Y_q^A V_{qR}$$

 \bullet If nonuniversal, even real A can overproduce EDMs

However from θ dependence,

$$\left(V_L \cdot \theta \frac{\partial Y}{\partial \theta} \cdot V_R^{\dagger}\right)_{ii} = V_{L\,ij} \frac{\theta \partial V_{L\,ij}^*}{\partial \theta} D_{ii} + \frac{\theta \partial D_{ii}}{\partial \theta} + D_{ii} \frac{\theta \partial V_{R\,ij}}{\partial \theta} V_{R\,ij}^*$$

Dominant order in θ fixed by D_{ii} , mixing matrices contribute only to higher orders. \Rightarrow Diagonal elements in Y^A are real at leading order

Subdominat contributions observable in SCKM,

$$\operatorname{Im} \left(\delta_{LR}^d \right)_{11} \simeq \left(\epsilon_d^n \ n \ \operatorname{Im}(\mathbf{g}) + \epsilon_d^{m-1} \ (m-1) \ \operatorname{Im}(\mathbf{f}) \right) \ 3.9 \times 10^{-6}$$
$$\operatorname{Im} \left(\delta_{LR}^u \right)_{11} \simeq \left(\epsilon_u^n \ n \ \operatorname{Im}(\mathbf{g}) + \epsilon_u^{m-1} \ (m-1) \ \operatorname{Im}(\mathbf{f}) \right) \ 1.9 \times 10^{-6}$$
$$\operatorname{Im} \left(\delta_{LR}^e \right)_{11} \simeq \left(\epsilon_d^n \ n \ \operatorname{Im}(\mathbf{g}) + \epsilon_d^{m-1} \ (m-1) \ \operatorname{Im}(\mathbf{f}) \right) \ 6.7 \times 10^{-7}$$

n = 0, m = 1 still allowed, but otherwise $n \ge 2, m \ge 3$ from Hg atom EDMs constraints Similarly, subdominant corrections to Y_{22} , Y_{12} and Y_{21} constrained to be ϵ^4 and ϵ^5 respectively

"String CP problem" avoided in reasonable flavour models

- Hierarchical Yukawa structure suggests ordering by $(\theta/M)^{\alpha}$
- Trilinear terms nonuniversality determined by this structure
- Large effects naturally expected in ε'/ε
- $\mu \rightarrow e\gamma$ can already constrain the allowed sfermion masses, for large F-terms.
- Third generation decays not sensitive enough.
- "String CP problem" solved in these models, although restricts structure of allowed textures.

