sector and the reactor

Bill Orejudos CDF Collaboration Lawrence Berkeley National Laboratory ICHEP 2002 July 24-31, 2002

Outline

- Tevatron, CDF, D0 upgrades
- Searches
 - new gauge bosons
 - technicolor, compositeness, topcolor
 - long-lived heavy charged particles
 - new physics with photons
 - Large Extra Dimensions
 - Supersymmetry: see talk by V. Zutshi
- Conclusion

The Tevatron

$p\overline{p}$ collider

- $\sqrt{s} = 1.8 \text{ TeV}$ at Run I (1992 96) about 0.1 fb⁻¹ per experiment
- First phase of Run II (Run IIa) started spring 2001
 - $rightarrow \sqrt{s} = 1.96 \text{ TeV}$ $rightarrow \text{goal}: 2 \text{ fb}^{-1} \text{ per experiment}$

CDF W'Search

Require at least one jet to be tagged as a b-jet

600

700

D0 W'Results

William Orejudos, LBNL ICHEP 2002

Drell-Yan Production

Dilepton final state can be used in searches for:

- new gauge bosons (Z')
- large extra dimensions
- quark-lepton compositeness
- technicolor

This would be modified by the presence of some sort of new physics – could exchange a new gauge boson, Kaluza-Klein (KK) tower, etc

Could also have new diagrams leading to dilepton final states, e.g. 2 gluons coupling to KK tower.

Selection of Dilepton Events

CDF Run I Dilepton mass distribution

Events selected with μ and e triggers Leptons required to:

Be oppositely charged

Have a high transverse momentum electron : $E_T > 25 \text{ GeV}$ muon : $p_T > 20 \text{ GeV}/c$

≻Be isolated

➢Originate from single vertex Background low at high lepton inv. mass:

 $M_{\ell^+\ell^-} > 300 \,\text{GeV}/c^2 : 5.6 \pm 0.6 \,\text{events}$ $M_{\ell^+\ell^-} > 400 \,\text{GeV}/c^2 : 1.3 \pm 0.1 \,\text{events}$

Results and Run II Reach (Z')

CDF Z' search

95% CL Mass Reach (GeV/c²) 00 00 00 00 00 00 111 (a) IΒ IA (1.8 TeV) 600 $\rightarrow e\nu$ (2.0 TeV) Ζ′ $\rightarrow \parallel$ NLC ø 400 \rightarrow dijet (1.8 TeV) Ο \Box Z[/] \rightarrow dijet (1.8 TeV) 200 LEP II 10² 10^{2} 10^{-1} 10 Integrated Luminosity (fb⁻¹) Z Run IIa reach : 1000 GeV/ c^2

Searches for New Gauge Bosons at Fermilab

Z peaks, Run II data

Central Dielectron Mass

William Orejudos, LBNL

ICHEP 2002

Analyses to look for an excess in the high mass region in progress by both CDF and D0 Drell-Yan searches can also be used to look for evidence of technicolor and quark-lepton compositeness. D0 Run I limits:

$$\rho_{T1}, \omega_{T1} \rightarrow e^+ e^- \Longrightarrow M_{\rho_{T1}, \omega_{T1}} > 225 \text{ GeV}/c^2 \quad \text{(other decays suppressed)}$$
Run IIa reach : 410 GeV/c²
compositeness scale from $e^+ e^- \Longrightarrow \Lambda^+(\Lambda^-) > 3.3(4.2) \text{ TeV}$
Run IIa $\Lambda^+(\Lambda^-)$ reach : 6.5 (10) GeV/c²
uark compositeness searched for in dijets. D0 Run I limits:
compositeness scale $\bowtie \Lambda^+(\Lambda^-) > 2.7(2.4) \text{ TeV}$
excited quarks : $q^* \rightarrow qg \implies M_{q^*} > 775 \text{ GeV}/c^2$

Run IIa reach : $940 \,\text{GeV}/c^2$

Technicolor searched for in other channels. CDF limits:

$$\rho_{T1} \rightarrow W \pi_{T1} \rightarrow \ell \upsilon b \bar{b}$$

$$P_{T1} \rightarrow W \pi_{T1} \rightarrow \ell \upsilon b \bar{b}$$

$$P_{T1} \rightarrow W \pi_{T1} \rightarrow \ell \upsilon b \bar{b}$$

$$P_{T1} \rightarrow W \pi_{T1} \rightarrow \ell \upsilon b \bar{b}$$

$$P_{T1} \rightarrow M \pi_{\rho} < 200 \text{ GeV}/c^{2}$$

$$P_{T1} \rightarrow \mu \bar{b} \bar{b}$$

$$Missing E_{T} > 20 \text{ GeV}$$

$$2 \text{ jets, } E_{T} > 15 \text{ GeV, one b-tagged}$$

$$160-240 \text{ GeV}/c^{2} \text{ at Run IIa}$$

$$\frac{\omega_{T1} \rightarrow \gamma \pi_{T1} \rightarrow \gamma b \bar{b}}{240 < M_{\omega} < 310 \text{ GeV}/c^{2}}$$

$$E_{T} > 25 \text{ GeV}$$

$$2 \text{ jets, } E_{T} > 20 \text{ GeV, one b-tagged}$$

$$\frac{E_{T}^{\gamma} > 25 \text{ GeV}}{2 \text{ jets, } E_{T} > 20 \text{ GeV, one b-tagged}}$$

$$\frac{140 < M_{\rho} < 290 \text{ GeV}/c^{2}}{290 \text{ GeV}/c^{2}}$$

$$P_{T1} = 120 \text{ GeV}/c^{2}$$

 $\rho_{T8} \rightarrow \pi_{LQ} \pi_{LQ} \rightarrow b \upsilon b \upsilon \qquad 2,3 \text{ jets with } E_T > 15 \text{ GeV, one b-tagged} \\ \text{No other jets with } E_T > 7 \text{ GeV, no leptons} \\ M_p < 600 \text{ GeV}/c^2 \qquad \text{Missing } E_T > 40 \text{ GeV} \\ 850 \text{ GeV}/c^2 \text{ at Run IIa} \end{cases}$

William Orejudos, LBNL ICHEP 2002

CHAMPS at Run II

CDF Run II CHAMP Analysis

Select events with high $p_{\rm T}$ muon trigger

Track must have large $p_{\rm T}$, be isolated, have large TOF

Signal Sample: $p_T > 40 \text{ GeV/c}^{\ddagger}$ Control Sample: $p_T > 20,<40 \text{ GeV/c}$

Control1: $p_{\rm T}$ >20, <30 GeV/c

Control2: $p_T > 30$, <40 GeV/c

Expected Background:

 $TOF_{\text{Diff}} = TOF_{\text{Meas}} - TOF_{\text{Exp}}^{\text{Deut}}$

30 < Pt < 40 GeV/c (background-dominated region)

 $N_{\text{Sig}}^{\text{TOF}_{\text{Diff}} > m} = \frac{N_{\text{Sig}}^{\text{TOF}_{\text{Diff}} > -0.2}}{N_{\text{Control}}^{\text{TOF}_{\text{Diff}} > -0.2}} \times N_{\text{Control}}^{\text{TOF}_{\text{Diff}} > m} \Longrightarrow \underbrace{\begin{array}{l} 2.2 \pm 0.8 \text{ bck. exp.} \\ (TOF_{\text{diff}} > 1.0 \text{ ns}) \end{array}}$

Photon Physics at Run II

New Physics with Photons

CDF has searched for new physics in the Run I diphoton sample:

- ➢ E_T > 22 GeV, both photons
 ➢ Photons isolated
 ➢ Bckgnd: Jets faking photons
- T 1• 1 / 1

No excess in diphoton sample.

Search for bosophilic higgs

H W/Z $\rightarrow \gamma \gamma$ W/Z Selecting W/Z: $e \ (\mu)$ with $E_{\rm T} \ (p_{\rm T}) > 20 \,\text{GeV}$ OR Missing $E_{\rm T} > 20 \,\text{GeV}$ OR 2 jets, $E_{\rm T} > 15 \,\text{GeV}, M_{\rm jj} > 40, <130 \,\text{GeV}/c^2$

Diphoton-W/Z sample

Inclusive Photon+Lepton Search

William Orejudos, LBNL

CDF has performed a model independent search at Run I for new physics that gives leptons, photons, missing E_T in final state

CDF Preliminary (86 pb⁻¹)

Category	Predicted $\mu_{\rm SM}$	Observed N_0	$P(N > N_0 \mu_{SM})\%$
$\overline{\operatorname{All} l, \gamma, X}$	_	77	_
\overline{Z} - like e, γ	_	17	_
Two - Body l, γ, X	24.9 ± 2.4	33	9.3
Multi - Body l, γ, X	20.2 ± 1.7	27	10.0
$\overline{\text{Multi}-\text{Body }l,l,\gamma,X}$	5.8 ± 0.6	5	61.0
Multi - Body l, γ, γ, X	0.02 ± 0.02	1	1.5
Multi - Body l, γ, MET, X	7.6 ± 0.7	16	0.7
Main Backgrounds:			
$W + \gamma, Z + \gamma, l + \text{fake} \gamma$	V		

D0 has searched for LED in diphoton/dielectron sample

2 EM objects $E_T > 45$ GeV for each $Missing E_T < 25$ GeV 1282 events in sample Bckgnd: Drell-Yan, $\gamma\gamma$, fakes

Invariant mass, angular dist. of EM objects considered No deviation from SM, Limit on eff. string scale $M_{\rm S}$ Comparison of the data with the SM predictions

CDF search with γ + Missing E_T

Graviton emission:

 $q\overline{q} \to G_{kk}\gamma$

 $E_{\rm T}^{\gamma} > 55 \,{\rm GeV}$ Missing $E_{\rm T} > 45 \,{\rm GeV}$ No jets with $E_{\rm T} > 15 \,{\rm GeV}$ No tracks with $p_{\rm T} > 5 \,{\rm GeV}/c$ Main bckgnd : Cosmic Rays, $Z \rightarrow \upsilon \upsilon \gamma$

 11.0 ± 2.2 expected, 11 observed

$$M_{s} > 549 \text{ GeV}/c^{2} (n = 4)$$

 $M_{s} > 581 \text{ GeV}/c^{2} (n = 6)$
 $M_{s} > 602 \text{ GeV}/c^{2} (n = 8)$

D0 search with jets and missing E_T

William Orejudos, LBNL

LED search, $G_{\rm KK}g$ final state

 $E_{\rm T}$ (jet1) > 150 GeV 1400 $E_{\rm T}$ (jet2) < 50 GeV DØ Run I Preliminary Results 1300 $|\eta_d| \leq 1.0 \quad (---)$ Missing $E_{\rm T} > 150 {\rm ~GeV}$ (Expected and actual limits are the same) 1200 LEP Limits Missing $E_{\rm T}$, jet $2 > 15^{\circ}$ apart 1100 (1000 № (GeV) 900 No isolated muons Main bckgnd: $Z \rightarrow \upsilon \upsilon$ jets 800 QCD/Cosmics 700 $W \rightarrow \tau \upsilon$ jets Limit with K Factor 600 (K = 1.34) 38.0 ± 9.6 expected, 38 observed Limit 500 400 $M_{\rm s} > 886 \,{\rm GeV}/c^2 \,({\rm n}=2)$ з 5 6 n $M_{s} > 617 \, \text{GeV}/c^{2} \, (n=7)$

Limits from Run II

D0 has repeated <u>LED</u> search in diphoton/dielectron final state

2 EM objects $E_T > 25$ GeV for each $Missing E_T < 30$ GeV 9.85 ± 0.38 pb⁻¹ used

No deviation from SM

 $M_{\rm S} > 0.82 \ {\rm TeV}/c^2$ for const. interference between Kaluza-Klein and SM contributions D0 <u>leptoquark</u> search ≥ 2 EM clusters w/ $E_T > 25$ GeV ≥ 1 jet w/ $E_T > 20$ GeV $\geq Z$ veto

Still need more data to improve on Run I results

Conclusion

- D0 and CDF have searched for new physics with many different signatures
 - Dileptons
 - Dijets
 - Diphotons
 - Jets with a heavy flavor tag
 - Jets and missing $E_{\rm T}$
 - Photon and missing $E_{\rm T}$
 - Inclusive photons+leptons
 - Large dE/dx and large time-of-flight
- Many different models have been explored
- No evidence yet for new physics
- Run II has started, searches are in progress!