LIGHT BOTTOM SQUARK PHENOMENOLOGY

Edmond L. Berger

Argonne National Laboratory July 26, 2002

- 1. Bottom Squarks (\widetilde{b}) and Gluinos (\widetilde{g}) with Small Mass
- 2. Bottom Quark Hadronic Production: Cross Section, Mixing
- 3. Restrictions from Other Processes
- 4. Bottomonium $\Upsilon(nS)$ and $\chi_b(J^P) o \widetilde{b} \widetilde{b}^*$ Decays
- 5. Higgs Boson Decays $ightarrow \widetilde{b}\widetilde{b}^*$

6. Summary

E. Berger, B. Harris, D. Kaplan, Z. Sullivan, T. Tait, and C. Wagner,

Phys.Rev.Lett. 86,4231 (2001) [hep-ph/0012001];

- E. Berger and L. Clavelli, Phys.Lett. B512,115-120 (2001) [hep-ph/0105147];
- E. Berger and J. Lee, Phys. Rev D65, 114003 (2002) [hep-ph/0203092];
- E. Berger, hep-ph/0201229, Int J. Mod Phys A, in press;
- E. Berger, C.-W. Chiang, J. Jiang, T. Tait, and C. Wagner, hep-ph/0205342;
- E. Berger, G. Bodwin, and J. Lee, hep-ph/0206115

1. Supersymmetry and Bottom Quark Production

- Motivation: Cross section for bottom quark production exceeds the central value of predictions of NLO QCD by a factor of 2 to 3 at Tevatron ($p\bar{p} \rightarrow b\bar{b}X$) [\rightarrow Fig.]
- New Physics: within the minimal supersymmetric standard model (MSSM), assume the existence of a low-mass color-octet, spin-1/2 gluino (*g̃*) and a low-mass color-triplet spin-0 bottom squark (*b̃*)
 Pair production of *g̃*:

$$p + \bar{p} \rightarrow \tilde{g} + \tilde{g} + X,$$

 $\tilde{g} \rightarrow b + \tilde{b}$ 100% BR

• Masses obtained by "fit" to the hadron collider b data:

– $m_{ ilde{g}}\simeq 12$ to $16~{
m GeV}$; $m_{ ilde{b}}\simeq 2$ to $5.5~{
m GeV}$

• Z^0 decays: Light \tilde{b} is excluded unless its coupling to the Z is small. Tree-level coupling vanishes for squark mixing angle $\sin^2 \theta_{\tilde{b}} \sim (2/3) \sin^2 \theta_W \sim 1/6$

(Carena, Heinemeyer, Wagner, and Weiglein, PRL 86, 4463 (2001))

- \hat{b} is the lightest SUSY particle; other than \hat{b} and \tilde{g} , masses of all other SUSY particles are arbitrarily large
- \tilde{b} can be long-lived on the scale of colliders or decay promptly (hadronically) via R-parity violation; lifetime less than the cosmological time scale no contribution to the dark matter density

2. Comparison of *b*-Quark Cross Section with Data

- Values of $m_{\tilde{g}} \simeq 12$ to 16 GeV produce p_{Tb} spectra that are enhanced near $p_{Tb}^{\min} \simeq m_{\tilde{g}}$ where data deviate most from pure QCD; light \tilde{g} is necessary to obtain a *b* cross section comparable to the pure QCD rate
- Theoretical uncertainty of roughly $\pm 30\%$ (yellow band) may be assigned to the final curve from variations of the renormalization and factorization scales μ , the *b* mass, and the parton densities

Larger Apparent $B^0 - \overline{B}^0$ Mixing at Hadron Colliders

- Majorana \tilde{g} 's decay into b or \bar{b}
 - $\tilde{g}\tilde{g}$ pair production generates bb and bb pairs as well as $b\bar{b}$ pairs \Rightarrow potential increase in like-sign lepton pairs, and apparent increased rate of $B\bar{B}$ mixing
 - Cuts chosen in Tevatron Run I produce principally unpolarized \tilde{g} 's and thus, at production,

$$\begin{split} N_{\tilde{g}}(bb+\overline{b}\overline{b}) &\simeq N_{\tilde{g}}(b\overline{b})\\ \text{Should see } B^+B^+, B^-B^- \text{ events at Run II} \end{split}$$

• The SUSY contribution affects the (time-averaged mixing)

-
$$\bar{b} \rightarrow B^o, B_s, \Lambda_b, B^+$$

 $ightarrow \ell^+$, "right sign", with probability $1-ar{\chi}$

- $ightarrow \ell^-$, "wrong sign", with probability $ar\chi$
- Define LS, like-sign lepton fraction
- Conventional bb pair production

$$\rightarrow LS_C = 2\bar{\chi}(1-\bar{\chi})$$

New expression

$$LS = \frac{1}{2} \frac{\sigma_{\tilde{g}\tilde{g}}}{\sigma_{\tilde{g}\tilde{g}} + \sigma_{\rm QCD}} + LS_C \frac{\sigma_{\rm QCD}}{\sigma_{\tilde{g}\tilde{g}} + \sigma_{\rm QCD}} \equiv 2\bar{\chi}_{\rm eff} (1 - \bar{\chi}_{\rm eff})$$

• Predict: $\bar{\chi}_{\text{eff}}^{\text{th}} = 0.16 \pm 0.02, m_{\tilde{g}} = 16 \text{ GeV}$

- CDF data $\bar{\chi}_{\mathrm{eff}}^{\mathrm{exp}} = 0.131 \pm 0.020 \pm 0.016$
- World average value from PDG : $\bar{\chi} = 0.118 \pm 0.005$

3. Are these SUSY masses and couplings excluded?

- UA1 analysis excludes a \tilde{g} with $4 < m_{\tilde{g}} < 53$ GeV if there is a lighter χ_1^0 . Then $\tilde{g} \to q\bar{q} + \not{\!\!\!E}_T$ PLB 198, 261 (1987). Our model has no such decay since \tilde{b} is the LSP
- ALEPH LEP determination of color factor ratios from an analysis of 4 jet events excludes a \tilde{g} with $m_{\tilde{g}} < 6.3$ GeV, but not gluinos in the mass range of interest to us. Light \tilde{b} is not excluded by 4 jet analysis
 - Z. Phys C76, 1 (1997)
- Exclusion by CLEO of a light \tilde{b} with mass 3.5 4.5 GeV does not apply since their analysis focuses on $\tilde{b} \rightarrow c l \tilde{\nu}$ and $\tilde{b} \rightarrow c l$ PRD 63, 051101 (2001). A long-lived \tilde{b} or one that decays via baryon-number R-parity violating couplings would evade CLEO's limitation. CLEO might wish to look for $\tilde{b} \rightarrow cq$, q = d, or s

LEP Constraints on Bottom Squark Couplings

- Light \tilde{b} would be ruled out by LEP 1 data unless its coupling to the Z boson is small
- Squark couplings to the Z depend on the mixing angle $\theta_{\tilde{b}}$
- Let $s_{\tilde{b}} = \sin \theta_{\tilde{b}}$ be the left-handed component of the lightest \tilde{b} mass eigenstate; $s_W^2 = \sin^2 \theta_W$
- Coupling $g_{Z\tilde{b}_1\tilde{b}_1} \sim [T_3 \, s_{\tilde{b}}^2 Q_{\tilde{b}} \, s_W^2]$ $(T_3 = -1/2; Q_{\tilde{b}} = -1/3)$
- Tree-level coupling to Z vanishes for $s_{\tilde{b}}^2 \sim 1/6$ (Carena, Heinemeyer, Wagner, and Weiglein, PRL 86, 4463 (2001)
- Thus, if the light bottom squark is an appropriate mixture of left-handed and right-handed bottom squarks, tree-level coupling to the Z can be made small (in general $\neq 0$)
- $Z \widetilde{b}_1 \widetilde{b}_2$, $Z \widetilde{b}_2 \widetilde{b}_2$ couplings survive in this limit
- Perhaps require $m_{\widetilde{b}_2}\gtrsim 200~{
 m GeV}$, depending on decay signatures, to avoid $e^+e^- \to Z^* \to \widetilde{b}_1 + \widetilde{b}_2$

• Deviations of R from SM expectations?

$$R = \frac{e^+e^- \to \text{hadrons}}{e^+e^- \to \mu^+\mu^-}$$

- Scalars are produced in a *p*-wave coupled to the intermediate photon
 - Thresholds turn on slowly
 - Cross sections are small ($\sim 1/4$ a fermion of the same charge)
- Compared to "everything else" \tilde{b} contributes

$$\begin{pmatrix} \frac{1}{3} \end{pmatrix}^2 \frac{1}{4} \quad \text{vs.} \quad 2\left(\frac{2}{3}\right)^2 + 3\left(\frac{1}{3}\right)^2$$
$$\frac{1}{36} \quad \text{vs.} \quad \frac{11}{9}$$

- Data must be accurate to 1 to 2% to discriminate. BES measurement gets down to ~ 6 to 7% Phys.Rev.Lett. 88, 101802 (2002)
- Angular distributions are potentially more powerful, $\sin^2 \theta$ vs. $(1 + \cos^2 \theta)$; data are consistent with a single pair of charge-1/3 squarks along with 5 flavors of $q\bar{q}$ pairs; $(1 + \alpha \cos^2 \theta)$, with $\alpha \simeq 0.92$

Running of the Strong Coupling Strength

• Evolution of the strong coupling strength α_s :

$$Q^2 d\alpha_s(Q^2)/dQ^2 = \beta(\alpha_s(Q^2))$$

• β function of (SUSY) QCD above gluino threshold:

$$\beta(\alpha_s) = \frac{\alpha_s^2}{2\pi} \left(-11 + \frac{2}{3}n_f + \frac{1}{6}n_s + 2 \right) + O(\alpha_s^3)$$

- The QCD running of $\alpha_s(\mu)$ is slowed.
 - \tilde{b} (color triplet scalar) contributes little to the running (equivalent to 1/4 of a new flavor)
 - \tilde{g} (color octet fermion) much more significant (equivalent to 3 new flavors of quarks)
- Precise determination of $\beta(\alpha_s)$ best way to exclude light gluino
- In SM, global fit to $\alpha_s(\mu)$ extracted from all observables provides $\alpha_s(M_Z) = 0.1184 \pm 0.006$ under SM running. With inclusion of a light gluino, there is a shift of ~ 0.007 to $\alpha_s(M_Z) \simeq 0.125$, within the range of uncertainty, but towards the upper end
- But, presence of a light gluino, with or without a light bottom squark, requires reanalysis of all extractions of $\alpha_s(\mu)$ to take SUSY production processes into account and to include SUSY-QCD contributions to the theoretical expressions. Smaller $\alpha_s(\mu)$ under slower evolution can lead to the same $\alpha_s(M_Z)$ as the SM

4. Bottomonium Decays: $\Upsilon \to \tilde{b}^* \ \tilde{b}$

- If the \tilde{b} is light enough, expect an increase of the hadronic widths of
 - $\Upsilon(nS)$ (n=1,2,3)
 - $\chi_b(J^{PC})$ ($J^{PC} = 0^{++}, 1^{++}, 2^{++}$)

- Large data samples at the $\Upsilon(4S)$ from CLEO, BaBar, BELLE; large samples at $\Upsilon(nS)$ from 2002 CLEO runs
 - fix $m_{ ilde{g}}=14$ GeV, predict, e.g.,

$$BR(\Upsilon(4S) \rightarrow \tilde{b}^* \ \tilde{b}) = 10^{-3}, m_{\tilde{b}} = 2.50 \,\mathrm{GeV}$$

- as many as 10K events at CLEO?
- signals could be distinctive
- $BR(\Upsilon(1S) o \tilde{b}\tilde{b}^*) \simeq 10\%$ for $m_{\tilde{g}} \simeq 16~{\rm GeV}$ and $m_{\widetilde{h}} \simeq 4~{\rm GeV}$
- For $\Upsilon(nS)$, n=1 to 3, calculate $R^{\Upsilon}_{\tilde{b}\tilde{b}^*}=\Gamma_{\tilde{b}\tilde{b}^*}/\Gamma_{\ell\bar{\ell}}$
- Current experimental uncertainty on hadonic widths:
 - for $\Upsilon(1S),$ about size of $\Gamma_{\ell\bar\ell}$
 - for $\Upsilon(2S)$ and $\Upsilon(3S),$ about $10\times\Gamma_{\ell\bar\ell}$
- $R^{\Upsilon}_{\tilde{b}\tilde{b}^*} < 10$ is satisfied easily for masses favored by collider data: $m_{\tilde{g}} \simeq 12 16$ GeV; $m_{\tilde{b}} \simeq 2 5.5$ GeV
- Smaller $R_{\tilde{b}\tilde{b}^*}^{\Upsilon}$ requires larger $m_{\tilde{b}}, m_{\tilde{g}}$. Bounds on $R_{\tilde{b}\tilde{b}^*}^{\Upsilon}$ \rightarrow important lower bounds on $m_{\tilde{b}}, m_{\tilde{g}}$

Bottomonium Decays: $\Upsilon \to \gamma \tilde{S}$ and $\chi_b \to \tilde{b}^* \tilde{b}$

- Decays to b can increase the hadronic width of χ_{b0} by $\sim 10\%$, for $m_{\tilde{g}} \sim 16$ GeV and $m_{\tilde{b}} \sim 4$ GeV; smaller contributions in χ_{b1} and χ_{b2} cases Berger and Lee, Phys. Rev. D65, 114003 (2002) [hep-ph/0203092]
- If \tilde{b} is relatively stable, $\tilde{b}\tilde{b}^*$ bound states can exist. $\tilde{S} = S$ -wave bound state; $\tilde{S} \to gg$
- \tilde{S} could be produced in radiative decays $\Upsilon \to \gamma \tilde{S}$; branching fraction:

Berger, Bodwin, and Lee, hep-ph/0203092

\widetilde{b} Lifetime and Observability

- Suppose the $ar{b}$ is relatively "stable", what could happen?
 - \widetilde{b} picks up a light \overline{u} or \overline{d} and becomes a \widetilde{B}^- or \widetilde{B}^0 "mesino" with J=1/2, the superpartner of the Bmeson, a hadron with mass $\sim 3-7$ GeV
 - $\Upsilon \rightarrow \tilde{B}^+ \tilde{B}^-$ produces two back-to-back charged tracks in the cm; equal momentum; $1 + \cos^2 \theta$ angular distribution; tracks have lower momentum than those from $\Upsilon \rightarrow \mu^+ \mu^-$. Look in the " τ scan" events
 - The mesino has baryon number 0 but acts like a heavy \bar{p} ionization, TOF, signal in DIRC, consistent with heavy \bar{p}
 - The charged mesino is not a muon but could fake a heavy muon in hadron collider experiments if it exits the muon chambers; \Rightarrow extra "muon"-like objects in a fraction of the $b\bar{b}$ event sample, with tracks that left some activity in the hadron calorimeter?
 - Detailed analyses should be done at hadron colliders to verify what ranges of \widetilde{b} masses and lifetimes may be allowed/disfavored
 - Assume that the lifetime of the bottom squark is less than the cosmological time scale so that these squarks make no contribution to the dark matter density

\widetilde{b} Lifetime and Observability, continued

- R-parity conservation does not permit \widetilde{b} decay unless there is an even lighter LSP
- MSSM superpotential with baryon-number-violating *R*-parity-violating term

$$W_{\mathcal{R}_p} = \lambda_{ijk}^{\prime\prime} U_i^c D_j^c D_k^c$$

 U_i^c and D_i^c are right-handed quark-singlet chiral superfields; i, j, k are generation indices

- Limits on individual baryon-number-violating R-parity-violating couplings λ'' are weak for 3rd generation \tilde{q} 's: $\lambda'' < 0.5$ to 1 Allanach, Dedes, Dreiner, PRD 60, 075014 (1999)
- Possible \mathbb{R}_p decay channels are $123 : \tilde{b}^* \to u + s$, $213 : \tilde{b}^* \to c + d$, and $223 : \tilde{b}^* \to c + s$.

$$\Gamma(\tilde{b} \to jj) = \frac{m_{\tilde{b}}}{2\pi} \sin^2 \theta_{\tilde{b}} \sum_{j < k} |\lambda_{ij3}''|^2$$

If $m_{\tilde{b}}=3.5~{
m GeV},$ $\Gamma(\widetilde{b}
ightarrow ij)=0.08|\lambda_{ij3}^{\prime\prime}|^2~{
m GeV}$

• Unless all $\lambda_{ij3}^{\prime\prime}$ are extremely small, the \tilde{b} will decay quickly. In Υ decay, curious $(2q, 2\bar{q})$ spectroscopy. In hadron colliders \tilde{b} will leave soft jets in the cone around the b; jets with an extra c are possibly disfavored by CDF. Detailed simulations are needed

\widetilde{b} -onia

- Might be seen as mesonic resonances in $\gamma\gamma$ reactions (i.e., $e^+e^- \rightarrow e^+e^-X$) and in $p\bar{p}$ formation with masses between 4-10 GeV and $J^P = 0^+, 1^-, 2^+, \ldots$
- Could show up as narrow states in $\mu^+\mu^-$ invariant mass spectra at hadron colliders, between the J/ψ and Υ
- At an e^+e^- collider, the intermediate photon requires production of a $J^{PC}=1^{--}$ state
 - Bound states of low mass squarks with $Q_{\widetilde{q}} = 2/3$ studied by Nappi with a potential model PRD 25, 84 (1982)
 - $*~\Gamma_\ell \sim 24~{\rm eV}$
 - * $\Gamma_h \sim 18~{\rm keV}$
 - * $\Gamma_{1S+\gamma}\sim 65~{\rm keV}$
 - The $1S\xspace$ state decays hadronically
 - Because the leptonic decay widths are too small there are no bounds for $m_{\widetilde{a}}>3$ GeV, $Q_{\widetilde{a}}=2/3$
 - For bottom squarks, the situation is even more difficult $(Q_{\widetilde{q}}=-1/3)$

5. Light Higgs Boson Decay: $h^0 \to \tilde{b}^* \ \tilde{b}$

- Within the MSSM, light \tilde{b} is obtained most readily for large $\tan \beta$, ratio of Higgs vacuum expectation values v_2/v_1
- Tree-level coupling of CP-even light h to light \widetilde{b} is

$$\frac{gm_b}{2m_W\cos\beta}(\mu\cos\alpha + A_b\sin\alpha)\sin2\theta_b + \cdots$$

- μ is the Higgsino mass parameter; $|\mu| > m_h$
- α is the $CP\mbox{-}even$ Higgs mixing angle
- In the decoupling regime (large pseudo-scalar Higgs mass $m_A >> m_Z$), $\cos \alpha \rightarrow \sin \beta$
- For large $\tan\beta$, the first term dominates $g_{h\tilde{b}^*\tilde{b}}\propto \mu\tan\beta$
- Higgs couplings to SM particles are not enhanced in the limit of large aneta and m_A
- Ratio of Higgs partial widths into \tilde{b}^* \tilde{b} and \bar{b} b is enhanced:

$$\frac{\Gamma_{\tilde{b}}}{\Gamma_b} \approx \frac{1}{2} (\frac{\mu}{m_h})^2 \tan^2 \beta \sin^2 2\theta_{\tilde{b}}$$

- decay to $\tilde{b}^*\;\tilde{b}$ much more important than decay to $\bar{b}\;b$ for $\mu\tan\beta/m_h{\gtrsim}10$
- Some enhancement of gg partial width because the \tilde{b} loop interferes constructively with the standard top quark loop

Implications of $h^0 \to \tilde{b}^* \; \tilde{b}$

- \tilde{b} carries color; it will materialize as a jet j of hadrons
- Take $\mu an eta / m_h$ as a parameter that measures the rate for h o jj
- What happens to the prospects for observation of the Higgs boson?
- New total width of Higgs boson $\Gamma_h\simeq\Gamma_h^{
 m SM}+\Gamma_h^{ ilde{b}^* ilde{b}}$
 - e.g., $\Gamma_h\simeq 66$ MeV for $\mu aneta/m_h=10$ vs. $\Gamma_h^{
 m SM}\simeq 3.3$ MeV; $m_h=120$ GeV
- Branching fractions to SM particles decreased $[\rightarrow Fig.]$
 - LC processes, $e^+e^- \rightarrow Z^0h$, $e^+e^- \rightarrow \nu\bar{\nu}h$ remain fully viable for discovery, measurement of mass and (some) couplings (h^0ZZ ; h^0WW , . . .)
 - Prospects at hadron colliders diminished; large QCD jet-jet backgrounds

Light Higgs Boson Branching Fractions

- With $m_h = 120$ GeV, $BR(h^0 \rightarrow b\bar{b}) \simeq 69\%$ in SM, and *b*-tagging plays a big role in search strategies
- $BR(h^0
 ightarrow b ar{b})$ drops to $\sim 3.4\%$ at $\mu an eta/m_h = 10$
- Decrease of SM BR's by a factor of 2 to 3 (i.e., $\mu \tan \beta/m_h =$ 2.3 to 3.2) drops expected $S/\sqrt{B} < 5$ at LHC for $gg \rightarrow hX$, $h \rightarrow \gamma\gamma$, ZZ^* , WW^* Likewise for $WW \rightarrow hX$, $h \rightarrow \tau^+ \tau^-$, WW^*

- Uncertainty is $\sqrt{S+B}/S$. Plotted vs. ratio of jet-jet width divided by $b\bar{b}$ width
- Starts at SM values from Snowmass '01 study
- jet jet (jj) defined as $\tilde{b}\tilde{b}^*$, $b\bar{b}$, gg, $c\bar{c}$
- $BR(h \to jj)$ and g_{hWW} can be determined fairly well from $e^+e^- \to hZ$ and $e^+e^- \to \nu\bar{\nu}h$, with $h \to jj$

6. Summary

- Postulate the existence of light gluinos and light bottom squarks with 100% branching fraction $\widetilde{g} \rightarrow b\widetilde{b}$ $m_{\widetilde{q}} \simeq 12 - 16 \text{ GeV}; m_{\widetilde{b}} \simeq 2 - 5.5 \text{ GeV}; \sin^2 \theta_{\widetilde{b}} \simeq 1/6$
- Consistent with all known experimental and theoretical constraints
- This SUSY scenario, with $\sigma_{\tilde{g}\tilde{g}}/\sigma_{\rm QCD} \simeq 1/3$, helps to resolve the longstanding discrepancy between data and predictions for the magnitude and shape of the *b*-quark p_T distribution at the Tevatron and UA1
 - Should see B^+B^+ , B^-B^- events at Run II
 - Visible in $B^0 \bar{B}^0$ oscillation parameters at the Tevatron larger apparent mixing
- Rare decays $\Upsilon(nS) \to \widetilde{b} \, \widetilde{b}^*$; $\Upsilon(nS) \to \gamma \, \widetilde{S}$; and $\chi_b \to \widetilde{b} \, \widetilde{b}^*$ searches could discover (place significant limits on) $m_{\widetilde{b}}$ and/or R-parity violation
- In light Higgs boson decay, $h^0 \rightarrow \tilde{b} \, \tilde{b}^*$ dominates \rightarrow light Higgs boson decays primarily to hadronic jets Discovery at LC still viable; prospects at hadron colliders diminished significantly
- See E. Berger, C.-W. Chiang, J. Jiang, T. Tait, and C. Wagner, hep-ph/0205342; and references therein

Further Papers

- Z-peak constraints beyond tree-level
 Cao, Xiong, and Yang, Phys.Rev.Lett. 88, 111802 (2002)
 Cho, hep-ph/0204348
 Baek, hep-ph/0205013
- Increase in the yield of $t\bar{t}b\bar{b}$ at hadron colliders from $t\bar{t}\tilde{g}\tilde{g}$ Leibovich and Rainwater, Phys.Rev.Lett. 88, 221801 (2002)
- Constraints from radiative *B* meson decays Becher, Braig, Neubert, and Kagan, hep-ph/0205274
- Prediction of possible excess of $q\bar{q}b\bar{b}$ at LEP $q\bar{q}\tilde{g}\tilde{g}$ vs. $q\bar{q}g$ with $g \rightarrow b\bar{b}$

Cheung and Keung, hep-ph/0205345