

Searches for New Physics at the LHC

Dan Tovey

University of Sheffield On behalf of the ATLAS and CMS Collaborations

Dan Tovey

Large Hadron Collider

- LHC will be a 14 TeV protonproton collider located inside the LEP tunnel at CERN.
- Luminosity goals are 10 fb⁻¹ / year (first 3 years) and 100 fb⁻¹/year (subsequently).

- First data in 2007.
- Higgs, SUSY and Exotics searches a main goal of ATLAS and CMS GPDs.

Dan Tovey

Recent Physics Studies

- ATLAS Physics and Detector Performance TDR published May 1999
 - Summarised all physics studies up to that point.
 - Contained large SUSY and Exotics chapters.
 - http://atlasinfo.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html
 - Work also presented at Physics Workshop (Lund, September 2001)
- Major CMS SUSY paper recently published
 - S. Abdullin et al., J. Phys. G28 (2002) 469
 - Summarises CMS SUSY activities up to ~ 1999
 - Also recent Compositeness and Extra Dimensions work
- Will concentrate on a few selected topics
- No GMSB, RPV SUSY, SUSY Higgs ,

Inclusive SUSY Searches

- Discovery reach mapped in mSUGRA parameter space: unified masses and couplings at the GUT scale \rightarrow 5 free parameters (m₀, m_{1/2}, A₀, tan(β), sign(μ)).
- Uses 'golden' Jets + n leptons + E_T^{Miss} discovery channel.
 - Heavy strongly interacting sparticles produced in initial interaction
 - Cascade decay with emitted jets and leptons
 - R-Parity conservation gives stable LSP (neutralino) at end of chain.
- Assess sensitivity in m₀-m_{1/2} plane.
- Sensitivity weakly dependent on A₀, tan(β) and sign(μ).
 - Choose 'reasonable' values
- R-Parity assumed to be conserved.

mSUGRA Reach

Abdullin and Charles, Nucl. Phys. B547 (1999) 60

Dan Tovey

SUSY Mass Scale

ATLAS

Hinchliffe, Paige et al., Phys. Rev. D55 (1997) 5520; DRT, Phys. Lett. B498 (2001) 1

- First measured SUSY parameter likely to be mass scale.
- Effective mass signal peak position ~ 2x SUSY mass scale.

- Peak position strongly correlated with mass scale for mSUGRA, GMSB etc.
- Pseudo model-independent
- Measurement error ~10% for mSUGRA after 1 year low lumi.

Mass Measurements

ATLAS

Hinchliffe, Paige et al., Phys. Rev. D55 (1997) 5520

- Starting point: OS SF dilepton edges.
- Important in regions of parameter space where two and three body decays of χ^0_2 to leptons dominate (e.g. LHC Point 5).

Position of edge can measure mass combinations to ~ 0.1%.

Dan Tovey

Dilepton Edge

Denegri et al., Phys. Rev. D60 (1999) 035008

CMS

CMS study of observability of edge over mSUGRA parameter space.

University of Sheffield

8

Slepton Chain

ATLAS

Lester et al., JHEP 0009 (2000) 004

Use constraints from variety of edge measurements to measure absolute masses (e.g. LHC Point 5).

been used: $\bar{\chi} = m_{\chi_0}^2, \tilde{\ell} = m_{\chi_0}^2, \tilde{\xi} = m_{\chi_0}^2, \bar{\eta} = m_{\chi_0}^2$ and X is m_{χ}^2 or m_{χ}^2 depending on which particle participates in the "brancked" decay.

- Can discriminate between **mSUGRA** point S5 and similar optimised string model O1.
- **Powerful technique applicable** to wide variety of RPC models.

Dan Tovey

Higgs Signatures

S. Abdullin et al., J. Phys. G28 (2002) 469

CMS

- Lightest Higgs particle produced copiously in $\tilde{\chi}^{0}_{2}$ decays if kinematically allowed.
- Prominent peak in bb invariant mass distribution.
- Possible discovery channel.

Dan Tovey

Extra Dimensions

- M-theory/Strings → compactified Extra Dimensions (EDs)
- Q: Why is gravity weak compared to gauge fields (hierarchy problem)?
- A: It isn't, but gravity 'leaks' into EDs.
- Possibility of Quantum Gravity effects at TeV scale colliders!
- Variety of ED models proposed:

Large (>>TeV⁻¹)

- Only gravity propagates in the EDs, M^{Eff}_{Planck}≈M_{weak}
- Signature: Direct or virtual production of Gravitons

TeV⁻¹

- SM gauge fields also propagate in EDs
- Signature: 4D Kaluza-Klein excitations of gauge fields

Warped

- Warped metric with 1 ED
- M^{Eff}_{Planck}≈M_{weak}
- Signature: 4D KK excitations of Graviton, Radion scalar

Large Extra Dimensions

Antoniadis, Benakli and Quiros PLB331 (1994) 313; Arkani-Hamed, Dimopoulos and Dvali PLB429 (1998) 263 ATLAS

- With δ EDs of size R, observed Newton constant related to fundamental scale of gravity $M_{\rm D}$:

 $\mathbf{G_N}^{-1} = \mathbf{8}\pi \mathbf{R}^{\delta} \mathbf{M_D}^{\mathbf{2}+\delta}$

 Search for direct graviton production in jet(γ) + E_T^{miss} channel.

TeV⁻¹ Scale ED

Azuelos and Polesello, 2001

- Usual 4D + Small (TeV⁻¹) EDs + Large EDs (>>TeV⁻¹)
- SM Fermions on 3-brane, SM gauge bosons on 4D+Small EDs, gravitons everywhere.
- 4D Kaluza-Klein excitations of SM gauge bosons (here assume 1 small ED)
- Masses of KK modes given by: $M_n^2 = (nM_c)^2 + M_0^2$

for compactification scale $\rm M_{c}$

• Look for e^+e^- , $\mu^+\mu^-$ decays of γ and Z KK modes.

> For 100 fb⁻¹ m_{II} peak detected if $M_c < 5.8 \text{ TeV}$ For 300 fb⁻¹ peak detected if $M_c < 13.5 \text{ TeV}$ (95% CL)

Randall and Sundrum, PRL 83 (1999) 3370; Giudice,Rattazzi and Wells, hep-ph/002178; Goldberger and Wise,PLB 475(2000)275

- Generates EW scale from Planck scale via warping of one small ED (rather than flat large ED as in ADD scenario).
- Universe \rightarrow two 4D surfaces bound warped 5D bulk.
- SM fields live on TeV scale ($y=\pi r_c$) brane, gravity lives everywhere

(1/k curvature radius, k ~
$$M_{\mu\nu}c$$
 doined radius)²

- Leads to two excitations: graviscalar radion and gravitony =
- Stabilise ED \rightarrow Radion acquires mass m=m₀e^{-kr π} governed by $M_{weak}/M_{Pl} \rightarrow kr_{c}\pi$ ~35 (Goldberger and Wise).
- Radion $\boldsymbol{\phi}$ radial excitation of compactified dimension.
- Radion can mix with SM Higgs scalar.

4-b

ATLAS

Allanach, Odagiri, Parker and Webber, JHEP 09 (2000) 019 - ATL-PHYS-2000-029

- Search for narrow graviton resonances (KK modes)
- Use gg (qq) \rightarrow G \rightarrow e⁺e⁻

- Signal can be seen for M in the range [0.5, 2.08] TeV for worst case Randall-Sundrum Scenario (k/ Λ_{π} =0.01).
- ATLAS can distinguish spin 2 vs 1 up to 1.72 TeV.

Azuelos, Cavalli, Vacavant and Przysiezniak (Proc. Physics at TeV Scale Colliders, 2001)

- Described by 3 params: m_{ϕ} (mass), Λ_{ϕ} (scale), ξ (ϕ -H mixing)
- Study observability of radion as function of Λ_{d} and m_{d}

Assuming 100fb⁻¹, ξ = 0, m_h=125 GeV, Λ_{ϕ} = 1(10) TeV for ϕ ->ZZ^(*)->4I: S/ \sqrt{B} ~100(1) (200<m_{ϕ}<600 GeV)

> Assuming 30fb⁻¹,ξ = 0,m_h=125 GeV for φ->hh->bbγγ: Λ_φ^{max}=4.6 → 5.7 TeV (m_φ= 300 → 600 GeV)

Dan Tovey

- Much work on Beyond the Standard Model physics being carried out by both ATLAS and CMS.
- Lots of input from both theorists and experimentalists.
- LHC and detector performance should in general give access to energy scales ~ a few TeV.
- Many studies of methods for measuring SUSY mass spectrum following discovery (edges, combination of edges etc.)
- Discovery/study of a plethora of Extra Dimension models and signatures also looks feasible.
- BUT ... we must never forget to

EXPECT THE UNEXPECTED!

 $ilde{\chi}_4^0$

Gaugino Edges

Dan Tovey

Large Extra Dimensions

Kabachenko, Miagkov, Zenin (ATL-PHYS-2001-012)

- Alternatively, search for virtual graviton production in dilepton and diphoton invariant mass spectra.
- M_{min} (GeV) 5000 122 $\mathsf{M}_{\mathsf{min}}$ **Superior results** Ω 4500 SM+aa+aa 10 4000 obtained with two 3500 channels combined. 3000 2500 pp 2000 1500 M_s=4.7 TeV, n=3 10 1000 5000 5500 6000 6500 2000 2500 3000 3500 4500 7000 7500 8000 4000 M_{II} (GeV) M_{min} (GeV) **fh**⁻¹ 100 fb⁻¹ 5000 Mb/Nb 5 σ 4500 10 SM+qq+gg 4000 3500 10 M_{D}^{max} (100 fb⁻¹) = 12 3000 `n=5 2500 8.1, 7.9, 7.1, 7.0 TeV pp 2000 for **δ=2,3,4,5** 1500 10 =4.7 TeV. n=3 1000 1500 2000 2500 3000 3500 4000 5000 5500 6000 6500 7000 7500 8000 4500 M., (GeV)

Dan Tovey

University of Sheffield

M_e^{max} (GeV)