Minireview on Leptoquarks at **HERA, LEP** and the Tevatron

Bruce Straub Yale University

- Introduction
- OPAL limits from $e\gamma > LQ + q$ H1 Limits on Contact Interaction
- OPAL limits on LQ pair production
 L3 indirect LQ limits
- HERA LQ Search

- eeqq Contact Interactions

- LEP comb. LQ limits, 2nd+3rd gen Quarks
- Lepton Flavor Violation
- Summary
- Future

Introduction to Leptoquarks

Leptoquarks are color triplet bosons with spin zero or one and with $L \neq 0$ and $B \neq 0$.

Partial widths: $(\lambda^2/16\pi)M_{\rm LQ}$ for spin zero $(\lambda^2/24\pi)M_{\rm LQ}$ for spin one

Scalar LQs decay isotropically Vector LQs decay $\sim (1\!+\!\cos\theta^*)^2$

Buchmuller, Rückl, Wyler model

Dimensionless chiral coupling(s) λ_L , λ_R are $SU(3) \times SU(2) \times U(1)$ invariant.

10 LQ species, 4 of which *could* couple to both λ_L and λ_R , but LQ mediated rare π and K decays are not seen \Rightarrow $\lambda_L \lambda_R << (M_{LQ}/10 \text{ TeV})$ So assume either $\lambda_L = 0$ or $\lambda_R = 0$.

F	spin	species
2	0	$S_{0,L}; S_{0,R}; \tilde{S}_{0,R}; S_{1,L}$
2	1	$V_{1/2,L}; V_{1/2,R}; \tilde{V}_{1/2,L}$
0	0	$S_{1/2,L}; S_{1/2,R}; \tilde{S}_{1/2,L}$
0	1	$V_{0,L}; V_{0,R}; \tilde{V}_{0,R}; V_{1,L}$
		k isospin and lepton bolicit

labeled by weak isospin and lepton helicity.

ruce Straub, Yale University

Pair Production

A not needed! (except to decay the LQ) Q may couple to any flavor q, ℓ e^+e^- limits: $M_{\rm LQ} > \sqrt{s}/2$

 $B_{\ell} = BR$ to charged lepton

ICHEP02, Amsterdam, 27 July 2002

Resonant Production

OPAL: $e\gamma \rightarrow LQ + X$ (#309)

OPAL: LQ pair production (#516)

LQ

 e^{-} \overline{LQ} \sqrt{s} between 189 and 209 GeV $\mathcal{L} = 596 \,\mathrm{pb}^{-1}$

 e^+

consider $q\overline{q}\nu\overline{\nu}$, $q\overline{q}\ell\overline{\nu}$, $q\overline{q}\ell^+\ell^ \ell = e \text{ or } \mu \text{ or } \tau$ q = u, d, c, s, b

$$\label{eq:beta} \begin{split} \beta &= BR(LQ \to \ell q) \\ \text{sensitive to } LQ \text{s which couple only} \\ \text{to } \nu q \end{split}$$

LQ Search at HERA ep Collider e^+ u

Use both NC (eq) and CC (νq) data for LQ search.

$$\sqrt{s} = 300 \text{ and } 318 \text{ GeV}$$

 $e^+p \qquad e^-p$
 $115 \text{ pb}^{-1} \qquad 17 \text{ pb}^{-1} \qquad \text{ZEUS}$
 $102 \text{ pb}^{-1} \qquad 15 \text{ pb}^{-1} \qquad \text{H1}$

H1 and ZEUS Mass Spectra

11, D0 Limits in (M, β_e) for several λ 's

$$\mathcal{L} = \frac{4\pi}{\Lambda^2} \sum_{q=u,d} \sum_{\alpha=L,R} \sum_{\beta=L,R} \eta_{\alpha\beta}^{eq} (\overline{e}_{\alpha} \gamma^{\mu} e_{\alpha}) (\overline{q}_{\beta} \gamma_{\mu} q_{\beta})$$

The $\eta_{\alpha\beta}^{eq}$ define a contact int. Some combinations represent leptoquarks.

L3 indirect LQ limits (#462)

EP Combined indirect LQ limits. 2nd and 3rd Generation Quarks

species	LEP	L3	H1	ZEUS
S_0^L	2.09	1.20	0.72	0.75
S_0^R	1.66	0.85	0.67	0.69
$ ilde{S}^R_0$	0.64	0.39	0.33	0.31
$S_{1/2}^{L}$	0.57	0.36	0.87	0.91
$S_{1/2}^{\dot{R}}$	0.74	0.50	0.37	0.69
$ ilde{S}_{1/2}^{L}$	-	-	0.43	0.50
S_1^L	1.15	0.86	0.48	0.55
V_0^L	2.93	1.78	0.77	0.69
V_0^R	0.53	0.51	0.64	0.58
$ ilde{V}^R_0$	1.56	1.21	1.00	1.03
$V_{1/2}^{L}$	0.97	0.81	0.42	0.49
$V_{1/2}^{R}$	0.72	0.69	0.94	1.15
$ ilde{V}_{1/2}^{L}$	0.56	0.53	1.02	1.26
$V_1^{'L}$	2.10	1.67	1.38	1.42

Lower Limits on $M_{\rm LQ}/\lambda$ (TeV $^{-1}$)

LEP combined and L3 limits were converted from lower limits on $M_{\rm LQ}$ for $\lambda = \sqrt{4\pi\alpha}$.

LQ Mediated Lepton Flavor Violation

Summary

• direct LQ searches at the Tevatron exclude

	scalar		vector		
gen	$\beta_\ell = 0$	$\beta_\ell = 1$	$\beta_\ell = 0$	$\beta_\ell = 1$	Desults tabulated by
1	98 GeV	242 GeV	238 GeV	292 GeV	Results tabulated by
2	123 GeV	202 GeV	238 GeV	275 GeV	WI.RUZE AND T.SHOIS
3	148 GeV	99 GeV	199 GeV	170 GeV	

- Indirect Limits from LEP and HERA exclude scalars with $M_{\rm LQ}/\lambda < 0.5 \dots 2.1$ TeV and vectors with $M_{\rm LQ}/\lambda < 1.0 \dots 2.9$ TeV.
- HERA direct searches provide a factor of 1 10 reduction in the λ limit for $200 < M_{LQ} < 300$ GeV.
- LEP indirect search rules out LQs coupling to e and 2nd or 3rd generation quarks for $M_{\rm LQ}$ up to 1.0 TeV for $\lambda = \sqrt{4\pi\alpha}$.

Future