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1. Introduction

Symmetry breaking is a fundamental concept

Popular mechanisms: Higgs mechanism, radiative symmetry

breaking (Coleman-Weinberg mechanism)

Connected to the problem of vacuum stability, i.e. the value of the

minimal Higgs mass

We study symmetry breaking on the lattice in the bosonic sector of

the SU(2)-Higgs model

Difficult two scale problem
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2. Lattice formulation

In perturbation theory SB occurs through radiative corrections if

the mass parameter (m0) is zero.

The resulting Higgs mass is of the order of the smallest possible

mass value in the broken case.

In the same sense m0=0 is close to the border of the SSB and no

symmetry breaking case.

The lattice action in standard notation is:

S[U,ϕ] = β
∑

pl

(

1−
1

2
TrUpl

)

+

+
∑

x

{

1

2
Tr

(

ϕ†xϕx
)

+ λ

[

1

2
Tr

(

ϕ†xϕx
)

− 1

]2

−κ

4
∑

µ=1

Tr
(

ϕ†x+µ̂Uxµϕx
)

}

3



The continuum bare parameters are given:

g2 = 4/β, λc = λ/4/κ2, ϕc =
√

2κ/aϕ and a2m2
0 = (1− 2λ)/κ− 8.

The action is bounded from below for positive λ, while it is not for

λ < 0.

Thus λ=0 is the interesting point relevant to the

Coleman-Weinberg mass. Since the Higgs mass is a monotonous

function of λ/κ2, the limit gives the smallest Higgs mass possible.

Our aim is to determine the Higgs mass in this region and try to

interpret the results in terms of the CW mechanism.
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3. Simulations

It is essential to simulate along a line of constant physics (LCP).

For CW we define the LCP with

λ=0, g2
R=fixed and κ tuned to the finite temperature phase

transition point.

We simulate on Lt · L
3
s hot lattices (Lt << Ls) and perform an

Ls →∞ extrapolation.

Next we extrapolate to the continuum limit (Lt →∞).

In practice we take λ very small (5 · 10−6, 2.875 · 10−5, 5.25 · 10−5),

fix β = 8 and find κcr by constrained simulation.

The physical scale is found for each λ, β, κcr by performing

simulations at T=0 and fixing MW=80 GeV. The quantity we

extrapolate is RHW = MH/MW .
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4. Results and conclusion

Lt = 2 κ∞ RHW

λ = 5.25 · 10−5 0.12822578(95) 0.1849(31)

λ = 2.875 · 10−5 0.12816615(128) 0.1726(41)

λ = 5 · 10−6 0.12811980(160) 0.1330(107)

Lt = 3 κ∞ RHW

λ = 5.25 · 10−5 0.12801466(21) 0.1615(50)

λ = 2.875 · 10−5 0.12792890(25) 0.1609(64)

λ = 5 · 10−6 0.12782043(24) 0.1246(245)

6



Lt = 4 κ∞ RHW

λ = 5.25 · 10−5 0.12797273(19) 0.1449(27)

λ = 2.875 · 10−5 0.12787487(18) 0.1531(225)

λ = 5 · 10−6 0.12774775(21) 0.1278(55)

Lt = 5 κ∞ RHW

λ = 5.25 · 10−5 0.12794617(14) 0.1505(61)

λ = 2.875 · 10−5 0.12783292(12) 0.1488(24)

λ = 5 · 10−6 0.12768277(20) 0.1240(141)
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Higgs mass squared as a function of λ/κ2
cr.
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In one loop perturbation theory one gets

M2
H = v2

· (8λc + 12B), B =
9g4

1024π2
(1)

The CW case corresponds to λc = −B/2. The minimal Higgs mass

is for λc = −B.

We get M2
H,min = 115.78± 4.95 GeV2 to be compared to the

perturbative value: 22.80 GeV2 (91.20 GeV2).
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