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Abstract

We reconsider the dispersive evaluation of the weak matrix elements
{(wm)1=2|Q78|K°) in the chiral limit. The perturbative matching is
accomplished fully within the scheme dependence used in the two loop
weak OPE calculations. The effects of dimension eight (and higher
dimension) operators are fully accounted for. We perform a numerical
determination of the weak matrix elements using our dispersive sum
rules fortified by constraints from the classical chiral sum rules. A
careful assessment of the attendant uncertainties is given.



Standard Model and €' /e
e EXPERIMENT

[/ lpgpr = (1B.£4.) - 107* (PDG2002)
e THEORY (STANDARD MODEL)

QCD Penguin: <<Q6>) = ((?T’JT)I=0|Q6|K0)

EW Penguin: ({(Qg)) = ((7m)r=2]|Qs| K°)

Non-perturbative, Very Difficult!

e CHIRAL SYMMETRY

ChPT Expansion: {(Q)) = ) + O(p2

QCD Penguin: {((Qg)) =0+ O(pz)

EW Penguin: ({(Qg)) ~ {{Qs))[1 —0.3+...]
e MAIN RESULT (Chiral Limit!)

[€'/€lgwp = (—22. £ 7.)-10™*  Negative, Large!



The Chiral World

e TAKING THE CHIRAL LIMIT

((Qs)), = —(O8)u/FOB + ...

(Og), is a vacuum matrix element.
i is the renormalization scale

Seek determination at ;1 = 2 GeV.

e THE V-A CORRELATOR All

Obtain (Os), from study of AlL
Access to data: Zm All(s) = m Ap(s).
Non-perturbative world <= experiment!

Sum Rule: (Og), = j;oo ds Kg(s, u®)Ap(s) + ..

Kernel: Kg(s, u?) = u?s?/(s + p?)
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Can We Do Better?
e THE SUM RULE APPROACH

Need to know Ap(s) beyond data region.
So utilize Weinberg sum rules.

But encounter errors from F'” and Am!)?!

e THE OPE FOR AIl

_ Znan(p) + ba(p) n(Q*/1?)
Qn

Dimension-six: ag(u) = 2m{a;Og), + . . .

OPE: AIl

e FINITE ENERGY SUM RULES (FESR)

Use FESR to obtain OPE coefficients a,,.
Integrate w(q?)All(¢°) over a keyhole contour.
Choose w; — wy to obtain various a,.

But ATl = ATIOP®) 4 (ATl — AIIOPE))

= ATIOPE) 1 Rlw, s



FESR Analysis

P
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L ds w(s AH(OPE) = ,°ds w(s) Ap(s)+ R[w, s
OPE DATA DIFF

T2

Keep data accessible: sy < m?

Avoid breakdown of OPE: 5y > 2 GeV?
Thus explore 2 < so(GeV?) < 3



Choosing the Weights (w(s))

e CRITERIA
Pinched weights: w(y) = (1-y)?*p(y) (y = s/s0)
Max stat signal: Avoid large V-A cancellations.
Keep it simple: Only two a4 per equation.

e EQUATION SET
(1): wi(y) = (1 — y)*(1 — 3y) — ag, as
(2): wa(y) = (1 — y)*y — ag, as
(3)— (6): ws...ws = ag,aq (d=10— 16)

(7)— (10): wy... w19 — asg, aqy (d =10 — 16)



Additional OPE Coefficients
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The Leading OPE Coefficients
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Results (Preliminary)
e OPE {a,} via FESR
ag = (—5.2£0.7) - 1073 GeV® (13.5% error)
ag = (—3.0 £ 3.2) - 1073 GeV®
a1 = (37 £12) - 1073 GeV?™
a1y = (=129 £ 37) - 1072 GeV?'?
B CHIR,AL VALUES for [€'/€]gwp
Sum Rule (old): (=22. £7.)-107*  (32% error)
FESR via ag: (—16.2 % 3.4)-107%  (21% error)

Sum Rule (new)*: (—16.5+3.7) - 10~*

*Not, discussed here.



