Status of V_{ub} from Belle

Youngjoon Kwon

Yonsei University for the Belle collaboration

The Unitarity Trianlge

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$
$$V_{ud} \cong V_{tb} \cong 1$$

* other triangles are difficult to measure

W-annihilation decays with V_{ub} vertex

- The cleanest mode with V_{ub} vertex is fully leptonic *B* decays
 - $B^+ \to \ell^+ \nu_\ell$
- uncertainty in f_B
- BF is very small for $\ell = e, \mu$ (helicity suppression)

$$\mathcal{B}(B^+ \to \ell^+ \nu_\ell) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

– or experimentally very messy due to multiple neutrinos for $B \rightarrow \tau \nu$

- a good place to search for new physics

ICHEP2002 Amsterdam 7/25/2002 Youngjoon Kwon (Yonsei Univ. /Belle)

Belle-CONF-0247

$B^+ \rightarrow \ell^+ \nu_\ell$ Event Selection

- Main feature
 - a monochromatic lepton in B rest frame
 - $-2.2 < p_{\ell}^* < 2.9 \; (\text{GeV}/c)$
- Background suppression
 - $M(B)_{opp} > 5.23 \text{ GeV}/c^2$
 - $-1.5 < \Delta E_{opp} < 0.0 \text{ GeV}$
 - SFW > 0 and $|\cos \theta_T| < 0.65$ for continuum suppression

 $B^+ \rightarrow \ell^+ \nu_{\ell}$ Results

Preliminary

• Fitting p_l distribution

> no evidence of signals => 90% CL upper limits

ICHEP2002 Amsterdam 7/25/2002 Youngjoon Kwon (Yonsei Univ. /Belle)

Semileptonic *B* decays for $V_{\mu b}$

- Semileptonic *B* decays provide the best opportunity for measuring $|V_{ub}|$
 - strong interaction effects are much simplified due to the two *leptons in the final state*

\mathbf{V}_{ub} from $B^0 \to \pi^- l^+ \nu$

- use detector hermeticity to "measure" undetected neutrinothe events should be consistent with
 - hermeticity assumption

 $|Q_{total}| < 2$; only one ID'ed lepton; $17^{\circ} < \theta_{miss} < 150^{\circ}$

– only one missing neutral particle = *neutrino*

• attribute missing (E,p) to the neutrino

 $B^0 \rightarrow \pi^- l^+ \nu$

- Other requirements
 - $1.2 < p_\ell < 2.8$ GeV/c
 - $|p_{\ell}| + |p_{\pi}| > 3.3 \text{ GeV}/c$
 - $q_{\rm obs}^2 > 1.5 \ {\rm GeV}^2$
 - $-R2 < 0.35, |\cos \theta_T| < 0.8$
 - $-|\cos\theta_{B-\pi\ell}| < 1$
 - best candidate based on M_{bc}
 - then, $M_{bc} > 5.25 \text{ GeV}/c^2$
- Signal yield is extracted by binned max. likelihood fit to ΔE and p_{ℓ}

Preliminary BF $(B^0 \rightarrow \pi^- l^+ \nu)$ & V_{ub}

- Need models
 - to obtain efficiency, hence $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell)$
 - to calculate $|V_{ub}|$

$$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) = \tau_{B^0} \Gamma(B^0 \to \pi^- \ell^+ \nu_\ell) = \tau_{B^0} \gamma_\pi |V_{ub}|^2$$

$$\tau_{B^0} = 1.554 \pm 0.036 \text{ps (Belle 2002)}$$

(Khodjamirian *et al.*)

model	UKQCD	LCSR
Reference	PLB 486, 111 (2000)	PRD 62, 114002 (2000)
good for	large q^2	small q^2
γ_π	9^{+3+2}_{-2-2}	7.3 ± 2.5
effi. (%)	2.9	3.1
$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell)$	$(1.35 \pm 0.11 \pm 0.21) \times 10^{-4}$	$(1.31 \pm 0.11 \pm 0.20) \times 10^{-4}$
$ V_{ub} $	$(3.11 \pm 0.13 \pm 0.24 \pm 0.56) \times 10^{-3}$	$(3.58 \pm 0.15 \pm 0.28 \pm 0.63) \times 10^{-3}$

ICHEP2002 Amsterdam 7/25/2002 Youngjoon Kwon (Yonsei Univ. /Belle)

F1

q^2 distribution of $B \rightarrow \pi l v$

 $d\Gamma/dq^2(/10^2 \,\mathrm{ns}^{-1}/4.3 \mathrm{GeV}^2/c^4)$

Unfolding of true q^2 distribution from observed distribution, by considering **efficiency/smearing**

 $\rightarrow \omega e^+ \nu$

$$\int L_{ON} dt = 60 \, fb^{-1}$$
$$\int L_{OFF} dt = 6 \, fb^{-1}$$

- Hermeticity requirement
 - $\star |Q_{\text{total}}| \leq 2$
 - \star single lepton with $p_\ell > 2.2~{\rm GeV}/c$
 - * $|M_{\rm miss}^2| < 3.0 \; ({\rm GeV}/c^2)$
- Continuum suppression
 - ★ R2 < 0.4
 - \star energy flow distribution around lepton
- ω selection
 - * $E_{\gamma} > 0.03 \text{ GeV}$; $0.12 < M(\gamma \gamma) < 0.15 \text{ GeV}/c^2$
 - * $p_{3\pi} > 0.3 \text{ GeV}/c$ $p_{\pi^0} > 0.2 \text{ GeV}/c$
 - * Dalitz amplitude $|\vec{p}_{\pi^+} \times \vec{p}_{\pi^-}| > 0.75 \times (max)$
- Signal region
 - $\star |\cos \theta_{B-e\omega}| < 1.0$
 - * $5.25 < M_{bc} < 5.29 \text{ GeV}/c^2, |\Delta E| < 0.3 \text{ GeV}$
 - * $5.10 < M_{bc} < 5.19 \text{ GeV}/c^2$, as a side-band

ICHEP2002 Amsterdam 7/25/2002 Youngjoon Kwon (Yonsei Univ. /Belle)

$B^+ \rightarrow \omega e^+ \nu$

N(events) in the signal region with $0.76 < m(3\pi) < 0.81$

$$222 \pm 15 \text{ (total)}$$

$$48 \pm 10 \text{ } (b \rightarrow c)$$

$$2 \pm 2 \text{ } (fake)$$

$$47 \pm 21 \text{ } (cont.)$$

$$MC \text{ est.}$$

•Excess in $m(3\pi)$ after side-band subtraction = 59 ± 15 events

 $B^+ \rightarrow \omega e^+ \nu$

Systematic uncertainties

- background est. 18.0%
- signal fitting9.2%
- MC statistics 5.1%
- tracking 6.0%
- photon-finding 4.0%
- electron ID 3.0%
- Total: 22.3%

preliminary

$$\mathcal{B}(B^+ \to \omega e^+ \nu) = (1.4 \pm 0.4 \pm 0.3) \times 10^{-4}$$

 $B^+ \to \rho^0 \ell^+ \nu$

 Similar "*neutrino reconstruction*" using hermeticity

 $\begin{array}{l} 2.0 < p_{\ell} < 2.8 \text{ GeV/c} \\ | Q_{\text{total}} | \le 2 \\ -2 < M_{\text{miss}}^2 < 4 \quad (\text{GeV/}c^2)^2 \\ | \cos \theta_{\text{miss}} | < 0.9 \end{array}$

• 2-dim. fit to ΔE vs. M($\pi\pi$)

$$B^+ \to \rho^0 \ell^+ \nu$$

$$\int L_{ON} dt = 29 f b^{-1}$$
$$\int L_{OFF} dt = 3 f b^{-1}$$

ゴ、

Projections onto ΔE and M($\pi\pi$)

Tentatively, using ISGW2 for
 efficiency, hence BF; and
 V_{ub}

$$\mathcal{B}(B^+ \to \rho^0 \ell^+ \nu) \qquad \begin{array}{l} preliminary \\ = (1.44 \pm 0.18 \pm 0.23) \times 10^{-4} \end{array}$$

$$V_{ub}| = (3.50 \pm 0.20 \pm 0.28) \times 10^{-3}$$

V_{ub} from $B \to D_s^{(*)} X_u$ decays

- Instead of $\ell \bar{\nu}$, we can use $D_s^{(*)}$
- signal B is fully reconstructed \rightarrow no need to worry about missing neutrino
- Currently, the largest uncertainty is in the $D_s^+ \to \phi \pi^+$ branching fractions: $\delta B/B \approx 25\%$
- Such uncertainties can be removed by taking the ratios, *e.g.* (Kim, Kwon, Lee & Namgung, PRD 63, 094506 (2001))

$$\frac{\Gamma(B \to D_s^{(*)} \pi)}{\Gamma(B \to D_s^{(*)} D)}$$

- Theory error from form factor uncertainty is O(10%): within the generalized factorization scheme; penguin effects are considered

YONSEI UNIVERSITY

ICHEP2002 Amsterdam 7/25/2002 Youngjoon Kwon (Yonsei Univ. /Belle)

preliminary $|V_{ub}/V_{cb}|$ from $B^0 \rightarrow D_s^+ \pi^-$

• Using Kim *et al.* (PRD (2001)), with the PDG value of $\mathcal{B}(B^0 \to D_s^+ D^-)$, we calculate the ratio

$$R \equiv \frac{\Gamma(B^0 \to D_s^+ \pi^-)}{\Gamma(B^0 \to D_s^+ D^-)} = (0.424 \pm 0.041) \times \left| \frac{V_{ub}}{V_{cb}} \right|^2$$
$$= (3.0^{+1.8}_{-1.6}) \times 10^{-3}$$

$$\implies \left| \frac{V_{ub}}{V_{cb}} \right| = 0.084^{+0.025}_{-0.023}$$

•Using PDG2002 for V_{cb} , $|V_{cb}| = (41.2 \pm 2.0) \times 10^{-3}$

$$\implies$$
 | V_{ub} |= (3.5^{+1.0}_{-0.9})×10⁻³

Belle-CONF-0247

Mode	Signal	Expected	Events in	Branching fraction
	Efficiency $(\%)$	background	signal region	upper limit (90% CL)
$\phi \pi^+$	8.5	0.4 ± 0.3	1	6.1×10^{-5}
$\bar{K}^{*0}K^+$	4.9	1.4 ± 0.5	1	$7.3 imes 10^{-5}$
$K^0_S K^+$	4.3	0.4 ± 0.3	0	5.2×10^{-5}
all combined			prelimina	2.6×10^{-5}

D)7

preliminary

Conclusion (1)

- Belle's new measurements of exclusive $B \to X_u \ell \nu$ semileptonic decays with $\int L dt = 60 \text{fb}^{-1}$
 - $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) = (1.33 \pm 0.11 \pm 0.21) \times 10^{-4} \ (updated!)$
 - $\mathcal{B}(B^+ \to \omega e^+ \nu) = (1.4 \pm 0.4 \pm 0.3) \times 10^{-4} \text{ (new!)}$

$$-\mathcal{B}(B^+ \to \rho^0 \ell^+ \nu) = (1.44 \pm 0.18 \pm 0.23) \times 10^{-4} \ (\int Ldt = 29 \text{fb}^{-1})$$

• Evidence of $B^0 \to D_s^+ \pi^-$

$$\mathcal{B}(B^0 \to D_s^+ \pi^-) = (2.4^{+1.0}_{-0.8} \pm 0.7) \times 10^{-5}$$

• upper limits on W-annihilation decay modes

$$- \mathcal{B}(B^+ \to e^+ \nu_e) < 5.4 \times 10^{-6}$$

$$- \mathcal{B}(B^+ \to \mu^+ \nu_\mu) < 6.8 \times 10^{-6}$$

 $- \mathcal{B}(B^+ \to D_s^{*+} \gamma) < 2.6 \times 10^{-5}$

preliminary

Conclusion (2)

• Calculation of $|V_{ub}|$ from $B^0 \to \pi^- \ell^+ \nu_\ell$ using LCSR and L-QCD models

$$|V_{ub}| = \begin{cases} (3.11 \pm 0.13 \pm 0.24 \pm 0.56) \times 10^{-3} & \text{UKQCD} \\ (3.58 \pm 0.15 \pm 0.28 \pm 0.63) \times 10^{-3} & \text{Khodjamirian, et al.} \\ (\text{LCSR}) \end{cases}$$

• From new measurement of $B^0 \rightarrow D_s^+ \pi^$ and using factorization-based calculation

$$|V_{ub}| = (3.5^{+1.0}_{-0.9}) \times 10^{-3}$$

Backup slides

The KEKB Collider

• E(cm) = 10.58 GeV on resonance of Υ (4S) production

The Belle detector

