

Measurement of the CKM Matrix Element |V_{ub}| with *BABAR*

ICHEP 2002 Amsterdam

Parallel Session CP Violation and the CKM Matrix

July 25th, 2002

Leif H. Wilden, TU Dresden for the *BABAR* Collaboration

Outline of the Presentation

Part I

- Inclusive versus Exclusive Measurements
- BABAR Dataset

Part II

- Inclusive Endpoint-Spectrum Analysis
- Preliminary Result

Part III

- Exclusive $\textbf{B} \rightarrow \rho$ e ν Analysis
- New Preliminary Result

Inclusive vs. Exclusive Measurement of |V_{ub}|

• Inclusive:

- blind to decay channel
- due to large b→c e v backgrounds only sensitive in a small lepton energy region
- need to extrapolate visible rate to total rate, introducing large model dependencies
- can use inclusive photon spectrum b→sγ to measure Fermi motion and reduce extrapolation uncertainty
- need Operator Product
 Expansion and b-quark mass to extract |V_{ub}| from the total rate.

Exclusive:

- reconstruct selected modes
- sensitive in larger lepton energy region, due to kinematical constraints
- need form-factors to describe the transition of the B meson to a light meson
- uncertainty of the form-factor normalization introduces large model dependency

The **BABAR** Data Set

Data Sets used:

Inclusive Analysis:

20.6 fb⁻¹ = on **2.6 fb⁻¹** off $\mathsf{N}_{\mathsf{B}\overline{\mathsf{B}}}$ **22.6 x 10⁶**

Exclusive Analysis:

$$L_{on} = 50.5 \text{ fb}^{-1}$$

 $L_{off} = 8.7 \text{ fb}^{-1}$
 $N_{BB} = 55.2 \times 10^{6}$

07/19/02

Inclusive Analysis-Strategy $b \rightarrow u e v$

- Measure $b \rightarrow u e v$ rate in electron energy range 2.3 ... 2.6 GeV
- Estimate continuum background using 4th degree Chebyshevpolynomial fit to off-peak data
- Other backgrounds from MC:
 - $\mathbf{B} \rightarrow \mathbf{X}_{c} \mathbf{e} v$
 - $J/\Psi \rightarrow e^+e^-$
 - $\mathbf{B} \rightarrow \mathbf{X}_{c} \rightarrow \mathbf{e}$
 - mis-id hadrons from $\mathbf{B} \rightarrow \mathbf{X}_{c}$
- **Correct for final-state radiation** and bremsstrahlung

Inclusive Estimation of |V_{ub}|

preliminary

- Systematic errors on partial rate:
 - Detector simulation 5%
 - Continuum subtraction 5%
 - MC b \rightarrow c subtraction 3%
 - Momentum spectrum of B mesons 5%
- Extrapolation to full rate:
 - using input from CLEO's $b \rightarrow s\gamma$ measurement (f_u = 0.074±0.014±0.009, fraction of events in 2.3 < E₂ < 2.6 GeV):

B =
$$(2.05 \pm 0.27_{exp} \pm 0.46_{fu}) \times 10^{-3}$$

|V_{ub}| = $(4.43 \pm 0.29_{exp} \pm 0.25_{OPE} \pm 0.50_{fu} \pm 0.35_{s\gamma}) \times 10^{-3}$

07/19/02

• Study 5 modes $\mathbf{B} \to H_u e \nu$, where $H_u = \rho^0, \rho^{\pm}, \omega, \pi^0, \pi^{\pm}$,

in 2 lepton-energy ranges:

- Binned Likelihood-Fit with 2 fit variables: $\Delta E = E_{had} + E_{lept} + |p_v| - E_{beam}$, where $|p_v| \approx |p_{miss}|$, and $M_{had} = \pi \pi(\pi)$ mass
- Take signal and background shapes from Monte Carlo simulations, and continuum shape from off-peak data
- Extrapolate partial branching fraction to entire lepton-energy spectrum using five different form-factor calculations.

• Determine $|V_{\mu\nu}|$ for each form-factor:

$$V_{ub} = \sqrt{\frac{B(B^0 \to \rho^+ e^- \nu)}{\Gamma_{theo} \tau_{B^0}}}$$

Fitting for the $\textbf{B} \rightarrow \rho$ e ν Branching Fraction

- Extended binned maximum likelihood fit
 - M_{had} vs ΔE (10x10 bins for ρ , 6x10 bins for ω , 10 bins for π)
 - simultaneously for ρ^{\pm} , ρ^{0} , ω , π^{\pm} , π^{0} , and in 2 lepton energy regions
 - use method by Barlow/Beeston (Comp. Phys. Com 77, 219-228) to take finite MC statistics into account
- Make use of isospin and quark model relations:
 - $\Gamma(B^{0} \rightarrow \rho^{-} e^{+} \nu) = 2 \Gamma(B^{+} \rightarrow \rho^{0} e^{+} \nu)$
 - $\Gamma(B^{0} \rightarrow \pi^{-} e^{+} \nu) = 2 \Gamma(B^{+} \rightarrow \pi^{0} e^{+} \nu)$
 - $\Gamma(B^+ \rightarrow \rho^0 e^+ \nu) = \Gamma(B^+ \rightarrow \omega e^+ \nu)$
- 9 parameter fit:
 - Par 1: \mathcal{B} (B $\rightarrow \rho / \omega e \nu$)
 - Par 2: \mathcal{B} (B $\rightarrow \pi^0 / \pi^{\pm} e \nu$)
 - Par 3+4: $b \rightarrow u$ downfeed (normalization in hilep/lolep)
 - Par 5..9: $b \rightarrow c$ (normalization)

Fit Projections for $B^0 \rightarrow \rho^- e^+ \nu$

direct signal
 crossfeed signal
 other b→uev
 b→cev

(isospin-constrained average of ρ^{\pm} and ρ^{0}) χ^{2} = 91(93 Ndof), P=52%

Direct signal yields HILEP (2.3 - 2.7 GeV): $510 \pm 62 \quad B^0 \rightarrow \rho^- e^+ \nu + CC$ $324 \pm 40 \quad B^+ \rightarrow \rho^0 e^+ \nu + CC$ 07/19/02 Leif Wilden

Summary of Systematic Errors on Br(B $\rightarrow \rho$ e $\nu)$

track efficiency	±5 %	Detector
track resolution / track smearing	±1 %	Simulation
photon/pi0 efficiency	±5 %	
photon/pi0 energy scale	±3 %	
electron id	±2 %	⊥ 0 0/
fake lepton rate (electrons)	±1 %	± 0 /0
resonant b→u downfeed composition (ISGW2)	+6,-4 %	Background
■ non-resonant b→u downfeed (Neubert & Fazio)	±9 %	Modeling
● b→c composition	+1.4,-1.7 %	+11 , -10 %
B counting	±1.6 %	Others
 B lifetime 	±1.5 %	
• f ₊₋ /f ₀₀	±1 %	
isospin breaking	±0 %	
fit method	+4 , -6 %	
data selection	±6 %	±9%

07/19/02

TOTAL: ±15.5 %

E

${\ensuremath{\mathsf{B}}}^{\ensuremath{\mathsf{o}}} \to \rho^{\ensuremath{-}} \, {\ensuremath{\mathsf{e}}}^{\ensuremath{\mathsf{v}}} \, {\ensuremath{\mathsf{B}}}^{\ensuremath{\mathsf{o}}} \, {\ensuremath{\mathsf{raction}}} \, {\ensuremath{\mathsf{Results}}}$

preliminary

Exclusive |V_{ub}| Results

preliminary

Conclusions & Outlook

BABAR measurements of the inclusive $b \rightarrow u e v$ rate and the branching fraction $B \rightarrow \rho e v$ were presented. The matrix element $|V_{ub}|$ can be derived from both measurements.

There is room for improvement in the future, both on the experimental and theoretical side, e.g.:

Inclusive Analysis:

- Perform *BABAR* combined measurement of $b \rightarrow u \mid v$ and $b \rightarrow s\gamma$.
- Make use of fully reconstructed B-Mesons on the tagging side.

Exclusive Analysis:

- Gain better understanding of the downfeed background.
- Improve neutrino momentum resolution, include larger fraction of the electron energy spectrum
- Hope for progress in form-factor lattice-QCD calculations

Inclusive Event Selection

require more than 3 tracks

- 2^{nd} normalized Fox Wolfram Moment R₂ < 0.4
- CMS missing momentum > 1 GeV/c
- -0.9 < cos θ_{miss} < 0.8, where θ = polar angle of missing momentum
- $\cos \theta_{I-miss} < 0$, where $\theta_{I-miss} =$ angle between electron and missing momentum
- Electron Selection:
 - select electron of highest momentum
 - cut based selector using information from drift chamber, calorimeter and chrenkov detector.
 - determine efficiency and fake rate from pure data control samples
 - veto electrons from J/ Ψ -mesons: M_{ee} < 3.05 or M_{ee} > 3.15

Selection Efficiency for 2.3 < p_{CMS} < 2.6 GeV : 27.7 %</p>

07/19/02

Backup Slide

Inclusive Results:

Experiment	V _{ub} x 10 ³	$b \rightarrow u rate x 10^3$
BABAR	$\begin{array}{c} 4.43 \pm 0.29 \pm 0.25 \pm 0.50 \pm 0.35 \\ \text{Stat.} & \text{OPE,} & f_{u} & s\gamma \\ \text{Syst.} & \text{b-mass} \end{array}$	$2.05 \pm 0.27 \pm 0.46$ Stat. f_{u} Syst. f_{u}
CLEO	$4.08 \pm 0.34 \pm 0.44 \pm 0.28$ Stat. OPE, f _u b-mass f _u	$1.77 \pm 0.29 \pm 0.38$ Stat. f_{u} Syst.
LEP average	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$1.71 \pm 0.31 \pm 0.37 \pm 0.21$ Stat. b \rightarrow c b \rightarrow u Syst.

Exclusive Event Selection I

Backup Slide

- Multihadron selection
 - Normalized Fox Wolfram Moment R₂<0.9</p>
 - N_{tracks} >4 || (N_{tracks} >3 && N_{clusters} >5)
- Electron ID
 - likelihood based electron selector using information from calorimeter, driftchamber, and cherenkov detector.
 - input: well reconstructed tracks whithin calorimeter acceptance

Suppression of other backgrounds

- lepton must not be compatible with a J/ψ decay:
 - $3 < M_{J/\Psi} < 3.14 \text{ GeV}$

MC: Rejects 76% of all selected electrons from true J/ Ψ s.

electrons must not be compatible with a photon conversion.
 MC: Rejects 38% of all selected electrons from true conversions.

Exclusive Event Selection II

Backup Slide

Hadron reconstruction

- Input: well reconstructed tracks
- reject track identified as kaon
- π^{0} candidates: 120 < m_{π^{0}} < 145 MeV
- max($p_{\pi 1}, p_{\pi 2}$)>400 MeV, other p_{π} >200 MeV
- Consistency requirement
 - |cos θ_{BY}|<1.1, rejects 60% of bad combinations without loosing signal
 - cos $\Delta \theta_{min}$ >0.8
- Continuum suppression
 - R₂ < 0.4 (R₂ with tracks and clusters)
 - Icos(θ_{miss})|<0.9</p>
 - neural network with 14 input variables

Comparison with Other Measurements *Backup Slide*

07/19/02

Fo	orm Factor Models Overview	Backup Slide
ISGW2	Isgur, Scora, Grinstein, Wise normalized at q ² =q ² _{max}	constituent quark model
UKQCD	UKQCD group 24 ³ x48 lattice, quenched calculations at q ² =q ² _{max}	lattice QCD calculation
	use of HQS and LCSRs to cover entire q	² range
LCSR	Ball, Braun normalized at small q ² , complementary to UKQCD, use of LCSR	light cone sum rules
B/M	Beyer, Melikhov fully relativistic	constituent quark model
	UKQCD results used for normalization a	t q ² _{max}
L/W	Ligeti, Wise relates semileptonic B and D decays uses input for D \rightarrow K* I ν from E791 measuerements	SU(3) flavour symmetry, SU(4) HQ spin-falvour symmetry
07/19/02	l eif Wilden TU Dresden	

