B_s Oscillation Results

Abstracts: 242 (OPAL), 250 (ALEPH), 478 (SLD), 587 (DELPHI) new new new

Stéphane Willocq University of Massachusetts, Amherst

31st International Conference on High Energy Physics Amsterdam 24-31 July 2002

Special thanks to D.Abbaneo, F.Parodi, O.Schneider, A.Stocchi

$B^0 - \overline{B}^0$ System (I)

 B⁰ ↔ B⁰ transitions occur via second order weak interactions

B_d⁰ mixing frequency:

$$\Delta m_d = \frac{G_F^2}{6\pi^2} m_{B_d} m_t^2 F\left(\frac{m_t^2}{m_W^2}\right) B_{B_d} f_{B_d}^2 \eta_{QCD} \left| V_{tb}^* V_{td} \right|^2 = 0.503 \pm 0.006 \, \mathrm{ps}^{-1}$$

World average July 2002

But extraction of $|V_{td}|$ from Δm_d is affected by a 15 to 20% uncertainty mostly due to theoretical uncertainty in $\sqrt{B_{B_d}} f_{B_d}$

 $\rightarrow \text{ reduced theoretical uncertainties and most precise determination of } |V_{td}|$ $\text{obtained by measuring } \Delta m_s / \Delta m_d$ $\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s} f_{B_s}^2 B_{B_s}}{m_{B_d} f_{B_d}^2 B_{B_d}} \cdot \left| \frac{V_{ts}}{V_{td}} \right|^2 = \frac{m_{B_s}}{m_{B_d}} \cdot (1.16 \pm 0.05)^2 \cdot \left| \frac{V_{ts}}{V_{td}} \right|^2$ $(1.32 \pm 0.10)^2$ A.Kronfeld & S.Ryan

S.Willocq (UMass)

B_s Oscillations @ ICHEP2002

$B^0 - \overline{B}^0$ System (II)

Wolfenstein parameterization of the CKM weak quark mixing matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Measurements of the oscillations frequencies impose significant constraints on (ρ,η) = apex of unitarity triangle

Mixing Ingredients (I)

(except for exclusive reco analyses that have small enough σ_p / p)

 $\Delta m_{s} = 10 \text{ ps}^{-1}$

Mixing Ingredients (II)

Need excellent decay length resolution to detect high-frequency oscillations

<u>Example</u>: B_s mixing with $\Delta m_s = 20 \text{ ps}^{-1}$, w = 0.25, $\sigma_p / p = 0.10$, $f_{Bs} = 0.18$

S.Willocq (UMass)

B_s Oscillations @ ICHEP2002

Initial State (Production) Tagging (I)

Polarized Forward-Backward Asymmetry (SLD only)
 Left- (right-) polarized e⁻ tags forward hemisphere quark as b (b)

Opposite Side Tags

Avg mistag rates w ≈ 0.28 (LEP) 0.22 (SLD)

Same Side Tags

Jet Charge

Fragmentation kaon: $B_s(\bar{b} s)$ produced with accompanying K⁻($\bar{s} u$)

 \rightarrow Tags combined in most analyses + event-by-event mistag probabilities

Initial State (Production) Tagging (II)

1992-2000 data

Reconstruction Methods

Inclusive Methods (I)

Inclusive Methods (II)

20000

10000

0

0

DELPHI inclusive analysis (4 M Z⁰)

155,023 soft lepton events

 Q_{lepton} for decay flavor tag with mistag probability w = 0.31

614,577 inclusive vertex events

"Dipole charge" formed from track ⁰ information in forward and backward hemispheres of the B rest frame

 \Rightarrow decay flavor tag with w = 0.42

(mistag increases slightly after calibration from data)

1992-2000 data

0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.2

0.9

decay tag vertices

Inclusive Methods (III)

Inclusive Lepton Analyses ALEPH, DELPHI, OPAL, SLD

Select high-p_T lepton to suppress (b \rightarrow c \rightarrow l⁺)

 \rightarrow lepton charge tags decay flavor (b \rightarrow I⁻) with mistag as low as w = 0.04 (SLD)

Reconstruct D meson inclusively (decay vertex topology & kinematical info)

 \rightarrow B vtx = intersection of lepton trajectory and D vtx "track"

vertexing also includes "B track" formed with particles in jet

Pros: large statistics

Cons: worse proper time resolution and

lower B_s purity than more exclusive methods

 \Rightarrow Include variables sensitive to proper time resolution, mistag probabilities and B_s purity on an event-by-event basis

Inclusive Methods (IV)

Amplitude Fit Method

• Time-dependent mixing generates periodic signal

⇒ ideally suited for Fourier Analysis pioneered by ALEPH NIM A384, 491 (1997) ⇒ measure oscillation amplitude A at fixed frequency Δm_s

Prob
$$(B_s^0 \rightarrow B_s^0) = \frac{1}{2} \Gamma e^{-\Gamma t} (1 + A \cos \Delta m_s t)$$

Prob $(B_s^0 \rightarrow \overline{B}_s^0) = \frac{1}{2} \Gamma e^{-\Gamma t} (1 - A \cos \Delta m_s t)$

MC generated with $\Delta m_s = 14 \text{ ps}^{-1}$

 $\rightarrow \sigma_{\!A}$ increases with $\Delta m_{\!s}$ due to limited proper time resolution

Inclusive Methods (V)

S.Willocq (UMass)

B_s Oscillations @ ICHEP2002

Semi-exclusive Methods (I)

• **<u>Ds-Lepton Analyses</u>** ALEPH, DELPHI, OPAL, CDF

Partial reconstruction of $B_s \rightarrow D_s^{-} I^+ \nu_I$ with full or partial reconstruction of D_s decay

$$D_s^- \rightarrow \phi \pi^-, \, K^{*0} K^-, \, K^0_{\ s} K^-, \, \dots \, \phi h^- X$$

use dE/dx (and RICH @ DELPHI)

Pros: high B_s purity, good proper time resolution Cons: low statistics

 B_s^0

IP

B_s Oscillations @ ICHEP2002

Semi-Exclusive Methods (II)

Exclusive Method

• **ALEPH+DELPHI** $(4.4+3.5 \text{ M Z}^{0})$

Full reconstruction of $B_s \rightarrow D_s^{-}\pi^+, D_s^{-}a_1^+$ $\overline{D}{}^0 K^-\pi^+, \overline{D}{}^0 K^-a_1^+$

with fully reconstructed D_s and \overline{D}^0 decays Also sensitive to modes with

photons: $D_s^{*-}\pi^+$, $D_s^{(*)-}\rho^+$, $D_s^{*-}a_1^+$ \rightarrow satellite peak if missed photon(s)

B_s signal in main peak:

14 (ALEPH) + 8 (DELPHI)

B_s signal in satellite peak:

14 (ALEPH) + 15 (DELPHI)

Excellent proper time resolution

 $<\sigma_L>$ = 180 μ m (ALEPH)

 σ_{L} = 117 µm (58%) & 216 µm (42%) (DELPHI) σ_{p} / p very small (0.5% ALEPH)

B_s Oscillation Amplitude: WORLD average

Individual B_s Oscillation Amplitude Measurements

B_s Oscillation Sensitivity

Compare amplitude uncertainties (1.645 σ_A) as a function of Δm_s

B_s Oscillations Summary

Look forward to 2nd generation expts (CDF, D0, LHCb, BTeV) to study B_s oscillations