B_d Mixing Measurements with the BaBar Detector

Cecilia Voena Università "La Sapienza" & INFN Roma

on behalf of the *BABAR* Collaboration

ICHEP2002

-Proceeds through box diagram

B⁰B⁰ Mixing

$$H = \begin{pmatrix} H_{11}H_{12} \\ H_{21}H_{11} \end{pmatrix} \qquad \frac{q}{p} = \begin{pmatrix} H_{21} \\ H_{12} \end{pmatrix}^{\frac{1}{2}}$$

if $|q/p| \neq 1 \Rightarrow CP$ violation in mixing (assuming CPT invariance $\frac{1}{2}$ Mass difference between

 $\Delta m_d = -2 \operatorname{Re}(H_{12}H_{21})^{\frac{1}{2}} \operatorname{Mass difference between}_{\text{Hamiltonian eigenstates}}$

$$\Delta m_d = \frac{G_F^2}{6\pi^2} m_w^2 e_B S_0(m_t^2 / m_W^2) m_{B_d} |V_{td}|^2 R_{B_d} f_B^2$$

- Δm_d sensitive to V_{td} CKM matrix element

- Extraction of V_{td} limited by theoretical hadronic uncertainties $-\frac{B_B}{B_B}f_B^2 = 235\pm33^{+00}_{-23}$ MeV (D. Becirevic and L. Lellouch, at this conference)

B0

d

0.8

0.6

0.4

0.2

W

 Δm_d

constraint in

-0.8 -0.6 -0.4 -0.2

 $(\overline{\rho},\overline{\eta})$ plane

W

0

0.2

0.4

0.8

0.6

F.Parodi

 $B_0 B_0$

h

Am

B^oB^o Mixing at Asymmetric **B** Factories

Before B factories:

 $\Delta m_d = 0.472 \pm 0.017 \text{ ps}^{-1}$

At BaBar, asymmetric B factory, dependent measurements we measure:

-can perform time

-high statistics sample of

fully reconstructed B_d, no B_e

 $\stackrel{\text{result}}{\xrightarrow{}} fully recommendations for the second statement of the seco$ -Mixing with hadronic decays (PRL 88:221802[2002]) -Mixing with dilepton events (PRL 88:221803[2002])

> 23 x 10⁶ BB ($B^0 \rightarrow D^{*-}I^+v$ and dilepton) 32 x 10⁶ BB (hadronic)

5. Compute the proper time difference $\Delta t \cong \Delta z/\gamma\beta c$ 6. Fit the Δt spectra of mixed (B⁰B⁰ or B⁰B⁰) and unmixed (B⁰B⁰)events

∆t Distribution of Mixed and Unmixed Events

$B^0 \rightarrow D^{*-}I^+\nu$ Selection

Reconstruct candidate D* using full decay tree

 $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+, K^- \pi^+ \pi^0, K^- \pi^+ \pi^- \pi^+, K_s \pi^+ \pi^-$

- Combine with lepton candidate (p* > 1.2 GeV)
- Require consistency with D*-1 kinematics (angles, missing v) $\widehat{\mathfrak{B}}_{10^3}$
- Cannot reconstruct B⁰ mass and energy because of the missing v
 => use m(D*)-m(D⁰) distribution

Sample Composition

Category	Peak Yield	$f_{ m cont.}$	$f_{ m fake}$	$f_{ m other B.}$	$f_{ m comb.}$
sig. sample e	7008 ± 91	1.5%	0.17%	3.1%	17.9%
sig. sample μ	6569 ± 88	2.3%	2.7%	2.9%	18.4%

Select several_control samples to characterize (fraction, \(\Delta\) t shape)
 ⁷
 the main sources of backgrounds

Neural network exploits information carried by non-identified leptons and kaons, soft pions from D* decays

Tagging Category	Efficiency ε(%)	Mistag Fraction w(%)	Q=ε(1-2w) ² (%)
Lepton	11.1	8.6	7.6
Kaon	34.7	18.1	14.1
Neural Net	54.2	37.7	3.3

Mixing with Hadronic Events

(purity ~86%)

- Fully reconstructed $B^0 \rightarrow D^{(*)} \pi^+ / \rho^+ / a_1^+, J/\psi K^{*0}$
- All Δt and mistag parameters simultaneously extracted from data $6347 B^{0}$
 - used for $sin 2\beta$ measurement
- Largest syst. is B⁰ lifetime

Mixing with Inclusive Dilepton Events

Very precise mixing measurement

- Select events with 2 high momentum leptons (sample contains ~50% B⁺)
- Largest syst. is B⁰ lifetime and resolution function parameterization

B⁰ Lifetime with Partially Reconstructed B⁰ \rightarrow D*-I+v

$$B^{0} \longrightarrow D^{*-} \ell^{+} \nu_{\ell}$$
$$D^{*-} \longrightarrow D^{0} \pi_{s}^{-}$$

reconstruct lepton and π only

Kinematic constraints at the Y(4S):

$$-\mathbf{p}_{\mathsf{D}^*} = \alpha \mathbf{p}_{\pi} + \beta$$

 π in a small cone around D* direction, α and β from simulation

missing neutrino

 τ_{BO} = 1.529 ±0.012 ±0.029 ps PRL 89[2002]

Summary

- New simultaneous measurement of Δm_d and τ_{B0} with the exclusive $B^0 \rightarrow D^{*-}I^+\nu_I$ sample $P_{re/ininary}$ $\Delta m_d = 0.492\pm0.018\pm0.013 \text{ ps}^{-1}$ $\tau_{B0} = 1.523^{+0.024}_{-0.023}\pm0.022 \text{ ps}$
 - Combined BaBar result for B_d mixing frequency:

∆m_d= 0.500±0.008±0.006 ps⁻¹ **1** 2% error

• Signal Model (including a B^{\pm} component):

Signal Δt Model

$$\mathcal{G}_{\text{sig}}^{\pm} = \left[(1 - f_{B^+}) \cdot \mathcal{G}_{B^0}^{\pm} + f_{B^+} \cdot \mathcal{G}_{B^+}^{\pm} \right] \otimes \mathcal{R} ,$$

- neutral and charged B physics models:

$$\mathcal{G}_{B^{0}}^{\pm}(\Delta t; \tau_{B^{0}}, \Delta m_{B^{0}}, \omega_{B^{0}}) = \frac{1}{4\tau_{B^{0}}} e^{-|\Delta t|/\tau_{B^{0}}} \left[1 \pm (1 - 2\omega_{B^{0}}) \cos(\Delta m_{B^{0}} \Delta t) \right]$$
$$\mathcal{G}_{B^{+}}^{\pm}(\Delta t; \tau_{B^{0}}, \Delta m_{B^{0}}, \omega_{B^{0}}) = \frac{1}{4\tau_{B^{+}}} e^{-|\Delta t|/\tau_{B^{+}}} \left[1 \pm (1 - 2\omega_{B^{+}}) \right],$$

The ratios τ_{B^+}/τ_{B^0} and $\omega_{B^+}/\omega_{B^0}$ are kept constant.

- Resolution function

$$\mathcal{R}(\delta \Delta t, \sigma_{\Delta t}; \vec{p}) = f \cdot G + (1 - f - f_{\text{out}}) \cdot G \otimes E + f_{\text{out}} \cdot G_{\text{out}} .$$

G =Gaussian, $E = e^{(x/a)}$ for x < 0.

Width of G and decay constant of E scale with $\sigma_{\Delta t}$. Width and bias of G_{out} do not scale with $\sigma_{\Delta t}$. Outler shape is fixed.

Background Δt Model

$$\begin{aligned} \mathcal{G}_{\mathrm{BG}} &= f_{\mathrm{osc}} \cdot \mathcal{G}_{\mathrm{osc}} + (1 - f_{\mathrm{osc}}) \cdot \mathcal{G}_{\mathrm{pmt}} ,\\ \mathcal{G}_{\mathrm{pmt}}^{\pm}(\Delta t) &= (1/2) \cdot \delta(\Delta t) \cdot \left(1 \pm \cdot (1 - \omega_{\mathrm{pmt}})\right) ,\\ \mathcal{G}_{\mathrm{osc}}^{\pm}(\Delta t) &= (1/4) \cdot \exp(-|\Delta t|/\tau_{\mathrm{bg}}) \cdot \left(1 \pm \cdot (1 - \omega_{\mathrm{osc}}) \cos \Delta m_{\mathrm{bg}} \Delta t\right) .\end{aligned}$$

- continuum all prompt ($f_{osc} = 0$).
- uncorrelated no oscillating behavior ($\Delta m_{\rm bg} = 0$).
- Each Δt model convoluted with a double-gaussian resolution function. Widths scaled with $\sigma_{\Delta t}$. Wide gaussian scale factors and biases are shared among four background models.

Systematic error

Source	$\delta\Delta m_{B^0}$	δau_{B^0}	Note	
	$[10^{-3} \mathrm{ps}^{-1}]$	[fs]		
Selection and fit bias	± 12.3	± 17.8	Stat error on generic MC fit	
z scale	± 2.0	± 6.0	0.4% recipe	
PEP-II boost	± 0.5	± 1.5	0.1% recipe	
SVT alignment	± 3.0	± 5.6	diffDL, diffEL recipes with sig	
			MC	
Beamspot position	± 1.0	± 5.0	Move/smear BS in sig MC	
Bkg / signal prob.	± 2.9	± 3.2	Vary $m(D^*) - m(D^0)$ fits	
Fixed B^+/B^0 lifetime	∓ 0.3	± 1.9	Vary lifetime ratio by $\pm 1\sigma$	
ratio			(PDG2002)	
Fixed B^+/B^0 mistag	∓ 0.1	∓ 0.3	Vary mistag ratios by $\pm 1\sigma$	
ratio			(BAD119)	
more				

Systematic error

Source	$\delta\Delta m_{B^0}$	δau_{B^0}	Note
	$[10^{-3} \mathrm{ps}^{-1}]$	[fs]	
Signal resolution model	± 0.9	± 3.4	G+G+G vs $GExp+G$
Fixed signal outlier shape	± 1.0	± 5.4	Vary outlier width & bias
Bkg Δt models	± 1.2	± 6.3	Vary comb. bkg model
Total syst. error	13	22	

Mistag fraction determined from simultaneous fit to B_{flav} sample

Tagging Category	Efficiency ε(%)	Mistag Fraction w(%)	B⁰/B̃º diff. ∆w(%)	Q=ε(1-2w) ² (%)
Lepton	11.1 ± 0.2	8.6 ± 0.9	0.6 ± 1.5	7.6 ± 0.4
Kaon	34.7 ± 0.4	18.1 ± 0.7	-0.9 ± 1.1	14.1 ± 0.6
NT1	7.7 ± 0.2	22.0 ± 1.5	1.4 ± 2.3	2.4 ± 0.3
NT2	14.0 ± 0.3	37.3 ± 1.3	-4.7 ± 1.9	0.9 ± 0.2
All	67.5 ± 0.5			25.1 ± 0.8

BOscillations Working Group

 $\Delta m_{d} (ps^{-1})$

20