

Measurement of Δm_d with Belle

Frédéric Ronga

Institute for High Energy Physics University of Lausanne – Switzerland

Outline

- Introduction (Belle & Δm_d)
- Dilepton measurement
- Semi-leptonic measurement
- $D^*\pi$ partial reconstruction
- Hadronic modes measurement
- Belle and world averages

THE BELLE EXPERIMENT

KEKB:

CMS energy @ $\Upsilon(4S)$ $\beta \gamma = 0.425$ SVD: $\sigma_z \approx 55 \mu m$ for 1 GeV/c at 90° CDC: $\sigma_p/p \approx 0.35\%$

at 1 GeV/c

KLM: $\epsilon_{\mu} > 90\%, \sim 2\%$ fakes

Magnet: 1.5 T Superconducting solenoid

B MIXING BASICS

Eigenstates of H^{eff}: $|B_{\pm}\rangle = p |B^0\rangle \pm q |\overline{B}^0\rangle$ (with *CPT* invariance)

Time evolution of pure $|B^0\rangle$ state:

$$|B^{0}(t)\rangle = g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B}^{0}\rangle$$
$$|g_{\pm}(t)|^{2} = \frac{e^{-\Gamma t}}{2}\left[\cosh\left(\frac{\Delta\Gamma_{d}}{2}t\right) \pm \cos(\Delta m_{d}t)\right]$$

In the SM: mixing through second order "box diagrams":

 $\Rightarrow \quad \Delta m_d \propto |V_{tb}^* V_{td}|^2$

B MIXING AT BELLE

- Mixing through second order "box diagrams"
- $\Upsilon(4S) \to B^0 \overline{B}{}^0$ pair \Rightarrow evolves into:
 - Same Flavour state: $P^{\text{SF}} = \frac{1}{4\tau_{B^0}} e^{\frac{-|\Delta t|}{\tau_{B^0}}} \left[1 \cos(\Delta m_d \Delta t)\right]$ - Opposite Flavour state: $P^{\text{OF}} = \frac{1}{4\tau_{B^0}} e^{\frac{-|\Delta t|}{\tau_{B^0}}} \left[1 + \cos(\Delta m_d \Delta t)\right]$ $\Delta m_d = m(B_H) - m(B_L)$: mass difference between mass eigenstates
- Proper time difference of decays: z separation $\Rightarrow \Delta t \approx \frac{\Delta z}{\beta \gamma c}$

• B flavour: from flavour specific decay modes.

DILEPTON ANALYSIS – SELECTION

Selection Criteria and Classification $(B^0 \to X^- l^+ \nu_l \text{ on each side})$

Tags: two fast leptons $(1.1 < p^* < 2.3 \text{ GeV/c})$

- *Proper time:* z separation ("IP constrained fit" for each lepton)
 - "Signal": primary leptons from B^{\pm} (OF) or B^{0} (OF and SF)
- Background: secondary lepton(s) - fake lepton(s)

Selection Result on 29.4 + 3.0 fb⁻¹ (31.9M \overline{BB})

Leptons type	on-resonance		off-resonance	
	SF	OF	SF	OF
ee	9877	52141	107	1513
$\mu\mu$	15503	65435	1464	4452
$e\mu$	24458	113305	976	4404
Total	49838	230881	2548	10368

DILEPTON ANALYSIS – FITTING PROCEDURE

Signal PDFs: Analytical function * resolution function (from J/ψ) B^{\pm} : $N_{\Upsilon(4S)} \cdot f_{+} \cdot b_{+}^{2} \cdot \eta^{+} \cdot \frac{e^{-|\Delta t|/\tau_{B^{+}}}}{2\tau_{B^{+}}} * R(\Delta t)$ B^{0} : $N_{\Upsilon(4S)} \cdot f_{0} \cdot b_{0}^{2} \cdot \eta^{\operatorname{unm}(\operatorname{mix})} \cdot \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} (1 \pm \cos(\Delta m_{d} \Delta t)) * R(\Delta t)$

Background PDFs: from Monte Carlo (with corrections)

Experimental parameters:

Signal: η^+ (OF), η^{unm} (OF), η^{mix} (SF) \longrightarrow fixed ratios Background: • correct tag: ϵ_{OF}^+ , $\epsilon_{\text{SF}}^{\text{mix}}$, $\epsilon_{\text{OF}}^{\text{unm}} \longrightarrow$ fixed ratios • wrong tag: ϵ_{SF}^+ , $\epsilon_{\text{SF}}^{\text{unm}}$, $\epsilon_{\text{OF}}^{\text{mix}} \longrightarrow$ fixed ratios • continuum contribution \longrightarrow fixed

 \implies Binned maximum likelihood with Δm_d , f_+/f_0 , $\eta^+/\epsilon_{\rm OF}^+$, $\eta^+/\epsilon_{\rm SF}^+$

DILEPTON ANALYSIS – FIT RESULT

Preliminary! BELLE-CONF 0205 $\Delta m_d = 0.503 \pm 0.008 \pm 0.009 \text{ ps}^{-1}$ $f_+/f_0 = 1.01 \pm 0.03 \pm 0.08$ $\chi^2/ndf = 139/86$

Main systematics

DILEPTON ANALYSIS – CPT FIT

Neutral B signal PDFs:

replace " $\cos(\Delta m_d \Delta t)$ " by:

 $|\cos\theta|^2 + (1 - |\cos\theta|^2)\cos(\Delta m_d\,\Delta t) - 2Im(\cos\theta)\sin(\Delta m_d\,\Delta t)$

 θ complex, CPT violated if $\theta \neq \frac{\pi}{2}$

Fit result:

1

$$\Delta m_d = 0.503 \pm 0.08 \text{ ps}^{-1} \text{ (stat. only)}$$
$$f_+/f_0 = 1.02 \pm 0.03 \text{ (stat. only)}$$
$$Re(\cos \theta) = 0.00 \pm 0.12 \pm 0.01$$
$$Tm(\cos \theta) = 0.03 \pm 0.01 \pm 0.02$$

Belle limits on CPT-violation: Preliminary!

$$\begin{aligned} |Re(\cos\theta)| &< 0.197 \implies \left| \frac{m_{B^0} - m_{\overline{B}^0}}{m_{B^0}} \right| < 1.20 \cdot 10^{-14} \quad (90\% \text{ CL}) \\ |Im(\cos\theta)| &< 0.059 \implies \left| \frac{\Gamma_{B^0} - \Gamma_{\overline{B}^0}}{\Gamma_{B^0}} \right| < 0.09 \qquad (90\% \text{ CL}) \end{aligned}$$

Semi-leptonic Analysis

Signal: full reconstruction

hep-ex/0207045 BELLE-CONF 0203

$$\begin{split} B &\to D^{*-} l^+ \nu_l \\ D^{*-} &\to \overline{D}{}^0 \pi^- \\ \overline{D}{}^0 &\to K^+ \pi^-, \ K^+ \pi^- \pi^0 \text{ or } K^+ \pi^- \pi^+ \pi^- \\ \cos \theta_{B,D^*l} &= \frac{(E_B^* - E_{D^*l})^2 - |\vec{p}_B^*|^2 - |\vec{p}_{D^*l}|^2}{2|\vec{p}_B^*||\vec{p}_{D^*l}^*|} \end{split}$$

+ *flavour tag* on opposite side (multi-dimensional likelihood)

Backgrounds:

Fraction	Type	Estimation
7.8%	fake D^*	D^0 side-bands & wrong-sign comb.
2.6%	random D^*l	from $\cos \theta_{B,D_l^*}$: uncorrelated
7.4%	$B ightarrow D^{**} l \nu$	fit $\cos \theta_{B,D_l^*}$
1.8%	continuum	from off-resonance data

Semi-leptonic – Background fractions

Semi-leptonic – Fitting

Signal PDF:

$$P^{\text{OF(SF)}}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 \pm (1 - 2\omega_l) \cos(\Delta m_d \,\Delta t))\right]$$

 $l = 1, \dots, 6$: classes of flavour-tagging "dilution factors"

Resolution function: double gaussian from *untagged* Δt distribution.

Unbinned likelihood fit:

$$L_{i}^{\text{OF(SF)}} = (1 - f_{\text{bg}}^{l}) \left[(1 - f_{D^{**}}^{l}) F_{\text{sig}}^{\text{OF(SF)}}(\Delta t_{i}) + f_{D^{**}}^{l} F_{D^{**}}^{\text{OF(SF)}}(\Delta t_{i}) \right] + f_{\text{bg}}^{l} \sum_{k} f_{k}^{l} f_{lk}^{\text{OF(SF)}} F_{k}^{\text{OF(SF)}}(\Delta t_{i}) \qquad (f_{lk}^{\text{OF}} + f_{lk}^{\text{SF}} = 1)$$

 \implies simultaneous fit to signal region and D^{**} dominated region of $\Delta m_d, \omega_l$ and bkg. normalisations

Semi-leptonic – Fit Result

PARTIAL RECONSTRUCTION

PARTIAL RECONSTRUCTION - RESULT

BELLE-CONF 0204

13

HADRONIC MODES

Full reconstruction of:

hep-ex/0207022 (to appear in PLB) BELLE-CONF 0206

$$B^{0} \to D^{+}(K^{-}\pi^{+}\pi^{+})\pi^{-}$$

$$D^{*+}\pi^{-}, \rho^{-}(\pi^{-}\pi^{0})$$

$$D^{*+} \to D^{0}\pi^{+}$$

$$D^{0} \to K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{-}\pi^{+}$$

HADRONIC MODES - RESULT

 $\Delta m_d = 0.528 \pm 0.017 \pm 0.011 \text{ ps}^{-1}$

Belle Summary

WORLD AVERAGE

