Determination of the unitarity triangle parameters

Fabrizio Parodi
(University of Genova/I.N.F.N.)

Outline

- Introduction
- Review of the Fit methods
- Results in the SM
- Strategies for the UT determination
- Fit in the Minimal Flavour Violation models
- Conclusions

Based on the Conference papers:
657: M. Ciuchini,E. Franco,V. Lubicz, G. Martinelli, F.P., L. Silvestrini, A. Stocchi and P. Roudeau
661: A. Buras, F.P. and A. Stocchi
959: G.P. Dubois-Felsmann, G. Eigen, D.G. Hitlin and F. C. Porter

Introduction

The weak charged current interaction of quarks is parametrized by the Cabibbo-Kobayashi-Maskawa matrix:

$$
\begin{aligned}
\hat{V}_{\mathrm{CKM}}= & \left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -s_{23} c_{12}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
\end{aligned}
$$

δ is the phase necessary for CP violation.
From experimental observation we know that s_{13} and s_{23} are small $\left(\mathcal{O}\left(10^{-3}\right)\right.$ and $\mathcal{O}\left(10^{-2}\right)$ respectively).
The $\hat{V}_{C K M}$ can be described by the four independent parameters

$$
s_{12}=\left|V_{u s}\right|, \quad s_{13}=\left|V_{u b}\right|, \quad s_{23}=\left|V_{c b}\right|, \quad \delta
$$

or (using Wolfenstein param. $\left.s_{12}=\lambda, s_{23}=A \lambda^{2}, s_{13} e^{-i \delta}=A \lambda^{3}(\rho-i \eta)\right)$ I:

$$
\left|V_{u s}\right|=\lambda, \quad\left|V_{c b}\right|, \quad \bar{\varrho}, \quad \bar{\eta}
$$

$$
{ }^{1} \bar{\rho}=\rho\left(1-\lambda^{2} / 2\right), \bar{\eta}=\eta\left(1-\lambda^{2} / 2\right)
$$

The pair $(\bar{\varrho}, \bar{\eta})$ describes the apex of the unitarity triangle (UT) representing the unitarity relation

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

rescaled by $\left|V_{c d} V_{c b}^{*}\right|=A \lambda^{3}=\lambda\left|V_{c b}\right|$:

$$
\bar{\varrho}+i \bar{\eta}-1+1-\bar{\varrho}-i \bar{\eta}=0
$$

Sides: R_{b}, R_{t}
Angles: $\alpha, \beta, \gamma \equiv \delta$

Experimental constraints on the UT:

Meas.	$V_{C K M} \times$ other	$(\bar{\rho}, \bar{\eta})$
$\frac{b \rightarrow u}{b \rightarrow c}$	$\left\|V_{u b} / V_{c b}\right\|^{2}$	$\bar{\rho}^{2}+\bar{\eta}^{2}$
Δm_{d}	$\left\|V_{t d}\right\|^{2} f_{B}^{2} B_{d} B_{d}$	$(1-\bar{\rho})^{2}+\bar{\eta}^{2}$
$\frac{\Delta m_{d}}{\Delta m_{s}}$	$\left\|\frac{V_{t d}}{V_{t s}}\right\|^{2} \xi^{2}$	$(1-\bar{\rho})^{2}+\bar{\eta}^{2}$
ϵ_{K}	$f\left(A, \bar{\eta}, \bar{\rho}, B_{K}\right)$	$\propto \bar{\eta}(1-\bar{\rho})$
$A\left(J / \psi K^{0}\right)$	$\sin 2 \beta$	$\frac{2 \bar{\eta}(1-\bar{\rho})}{\sqrt{\bar{\eta}^{2}+(1-\bar{\rho})^{2}}}$

$1=$

$\bar{\rho}$

Fit Methods: Bayesian, Rfit, Scan

Main difference: treatment of the systematical error of the theoretical parameters.

	Bayes	Rfit	Scan
Input	p.d.f. (syst.+stat.)	stat. likelihood + syst. ranges	stat. likelihood + set of theo. values
Output	Probability regions for all the parameters	Allowed CL regions	(CL=lower bound on CL)

Example: $B_{K}=0.86 \pm 0.06_{\text {stat }} \pm 0.14_{\text {syst }}$

Starting from the same values the allowed regions are different (factor 1.7 at 68\% C.L. between Bayesian and Rfit)

Comparison of Bayesian/Rfit

Work started at the CKM Workshop. Aim: improve our understanding of the differences between differenr fit methods comparing their results starting from the same inputs.

Ratio RFit/Bayesian Method			
Parameter	$5 \% \mathrm{CL}$	$1 \% \mathrm{CL}$	$0.1 \% \mathrm{CL}$
$\bar{\rho}$	1.42	1.34	1.12
$\bar{\eta}$	1.18	1.12	1.05
$\sin 2 \beta$	1.16	1.16	1.17
γ°	1.51	1.31	1.09

Scan method

G.P. Dubois-Felsmann, G. Eigen, D.G. Hitlin and F. C. Porter

Fit for $(\bar{\rho}, \bar{\eta})$ with fixed set of theo. parameters (a "model"):

$$
\mathcal{M}=\left\{F_{D^{*}}(1), \tilde{\Gamma}_{e x c l}, f_{B_{d}} \sqrt{B_{B_{d}}}, B_{K}, \xi\right\}
$$

$V_{u b}$ and $V_{c b}$: only exclusive measurements are used.

Scan method

G.P. Dubois-Felsmann, G. Eigen, D.G. Hitlin and F. C. Porter

Fit for $(\bar{\rho}, \bar{\eta})$ with fixed set of theo. parameters (a "model"):

$$
\mathcal{M}=\left\{F_{D^{*}}(1), \tilde{\Gamma}_{e x c l}, f_{B_{d}} \sqrt{B_{B_{d}}}, B_{K}, \xi\right\}
$$

$V_{u b}$ and $V_{c b}$: only exclusive measurements are used.

Display the consistency of the fit in the theoretical parameters space.

For each pair $\left(T_{1}, T_{2}\right)$ verify if at least one fit pass a certain χ^{2} cut \longrightarrow draw contour Different contours \leftrightarrow different configurations for the undisplayed parameters

Cyclic permutations of the two variables give 3D plots

Inputs for the CKM fit

Standard set:

Parameter	Value	Gaussian σ	Uniform half-width
λ	0.2210	0.0020	-
$\left\|V_{c b}\right\|$ (excl.)	42.1×10^{-3}	2.1×10^{-3}	${ }^{-}$
$\left\|V_{c b}\right\|$ (incl.)	40.4×10^{-3}	0.7×10^{-3}	0.8×10^{-3}
$\left\|V_{c b}\right\|$ (ave.)	40.6×10^{-3}	$0.8 \times 10^{-3 *}$	
$\left\|V_{u b}\right\|$ (excl.)	32.5×10^{-4}	2.9×10^{-4}	5.5×10^{-4}
$\left\|V_{u b}\right\|$ (incl.)	40.9×10^{-4}	4.6×10^{-4}	3.6×10^{-4}
$\left\|V_{u b}\right\|$ (ave.)	36.3×10^{-4}	$3.2 \times 10^{-4 *}$	
$\left\|V_{u b}\right\| /\left\|V_{c b}\right\|$ (ave.)	0.089	0.008*	
ΔM_{d}	$0.503 \mathrm{ps}^{-1}$	$0.006 \mathrm{ps}^{-1}$	
ΔM_{s}	$>14.4 \mathrm{ps}^{-1}$ at 95% C.L.		y $19.2 \mathrm{ps}^{-1}$
m_{t}	167 GeV	5 GeV	-
$\sin 2 \beta$	0.762	0.064	-
\hat{B}_{K}	0.86	0.06	0.14
$f_{B_{d}} \sqrt{\hat{B}_{B_{d}}}$	230 MeV	30 MeV	15 MeV
ξ	1.18	0.03	0.04

New lattice QCD parameters with "chiral logarithms"

$$
\begin{array}{cccc}
f_{B_{d}} \sqrt{\hat{B}_{B_{d}}} & 235 \mathrm{MeV} & 33 \mathrm{MeV} & { }_{-24}^{+0} \mathrm{MeV} \\
\xi= & 1.18 & 0.04 & { }_{-0}^{+12}
\end{array}
$$

Fit Results

M. Ciuchini,E. Franco,V. Lubicz, G. Martinelli, F.P., L. Silvestrini, A. Stocchi and P. Roudeau

$$
\begin{aligned}
& V_{c b}=(40.43 \pm 0.74) 10^{-3} \\
& \bar{\rho} \\
& \bar{\eta}=(0.203 \pm 0.040) \\
& =(0.355 \pm 0.027)
\end{aligned}
$$

Fit Results

M. Ciuchini,E. Franco,V. Lubicz, G. Martinelli, F.P., L. Silvestrini, A. Stocchi and P. Roudeau

$$
\begin{aligned}
V_{c b} & =(40.43 \pm 0.74) 10^{-3} \\
\bar{\rho} & =(0.203 \pm 0.040) \\
\bar{\eta} & =(0.355 \pm 0.027)
\end{aligned}
$$

Fit including "chiral logs" syst. in ξ and $f_{B_{d}} \sqrt{B_{B_{d}}}$:

$$
\begin{aligned}
& \bar{\rho}=\left(0.177_{-0.044}^{+0.047}\right) \\
& \bar{\eta}=(0.365 \pm 0.028)
\end{aligned}
$$

Comparison between sides and angles

Comparing CP violating measurements ($\epsilon_{K}, \sin 2 \beta$) with measuraments without CP-information $\left(\Delta m_{d}, \Delta m_{s},\left|V_{u b} / V_{c b}\right|\right)$

$\bar{\rho}$
Coherent CP picture in the SM !

Consistency checks and predictions

Fit overconstrained: remove constraints one by one to check their impact and the global consistency

Impact of $\sin 2 \beta$
(2)

Consistency checks and predictions

Fit overconstrained: remove constraints one by one to check their impact and the global consistency

Impact of $\sin 2 \beta$
(2)
$\sin 2 \beta$: compare direct measurements ($\mathrm{BaB}^{\bar{\rho}} r^{2}$, Belle,..) with indirect determination:

$$
\begin{array}{ll}
\sin 2 \beta_{W A} & =(0.762 \pm 0.064) \\
\sin 2 \beta_{\text {indirect }} & =\left(0.715_{-0.045}^{+0.055}\right)
\end{array}
$$

The two determinations are well in agreement and have similar precisions.
Note: real pre-diction!
CKM fits have predicted this value (with slightly larger error) already in 1997.
Including the $\sin 2 \beta$ constraint the fit gives:

$$
\sin 2 \beta=\left(0.734_{-0.034}^{+0.045}\right)
$$

[^0]
Next to come: $\Delta m_{s}, \gamma$ and α

Δm_{s} p.d.f. without the Δm_{s} constraint

$$
\Delta m_{s}=\left(17.8_{-3.2}^{+3.4}\right) p s^{-1}
$$

$$
[9.4-24.4] p^{-1} \text { at } 95 \% \mathrm{CL}
$$

γ p.d.f.

Δm_{s} p.d.f. with the Δm_{s} constraint

$$
\begin{aligned}
& \Delta m_{s}=\left(17.6_{-1.3}^{+2.0}\right) p s^{-1} \\
& {[15.2-20.9] \mathrm{ps}^{-1} \text { at } 95 \% \mathrm{CL}}
\end{aligned}
$$

$\sin 2 \alpha$ p.d.f

Strategies for the UT

The determination of $(\bar{\rho}, \bar{\eta})$ only requires two indipendent measurements.
Questions: fixing the same relative precision which are the most effective pairs of variables among $R_{b}, R_{t}, \alpha, \beta, \gamma$?
First divide the variables in two groups: $\left(R_{b}, \beta\right) \quad\left(R_{t}, \alpha, \gamma\right)$

Ranking:
$(\gamma, \beta) \quad\left(\gamma, R_{b}\right)$
$(\alpha, \beta) \quad\left(\alpha, R_{b}\right)$
$\left(R_{t}, \beta\right) \quad\left(R_{t}, R_{b}\right) \quad\left(R_{b}, \beta\right) \quad$ available at present

Alternative Set of Parameters

Flavour Sector

Parameters in Electroweak Gauge Sector

Until 2001

$$
\left|V_{u s}\right|,\left|V_{c b}\right|, \bar{\rho}, \bar{\eta}
$$

No measurements of $\bar{\rho}$ and $\bar{\eta}$ are available

Taking into account experimental feasibility and theoretical cleanness

$$
\left|V_{u s}\right|,\left|V_{c b}\right|, R_{t}, \beta
$$

appears as a better choice

Present impact of this strategy on the standard parameters:

$$
\begin{array}{ccc}
& \bar{\rho} & \bar{\eta} \\
\left(R_{t}\left(\Delta m_{d}, \Delta m_{s}\right), \beta(\sin 2 \beta)\right) & 0.241 \pm 0.050 & 0.363_{-0.040}^{+0.043} \\
& {[0.139-0.344]} & {[0.282-0.449]} \\
\text { All the constraints } & 0.203 \pm 0.040 & 0.355 \pm 0.027 \\
& {[0.124-0.278]} & {[0.302-0.410]}
\end{array}
$$

UT Fit in MFV models

Minimal Flavour Violation models: flavour violation only in $V_{C K M}$, new physics in the loops. Virtue: all the effects of new physics parametrized in the function $F_{t t}$ (entering in Δm_{d} and ϵ_{K})

A Universal Unitarity Triangle for MFV can be constructed using only measurements that do not depend on $F_{t t}:\left|V_{u b} / V_{c b}\right|, \Delta m_{d} / \Delta m_{s}$ and $\sin 2 \beta$.

Little room for MFV models that, in their prediction, differ from SM.
Adding Δm_{d} and ϵ_{K} one can fit $F_{t t}$:

$$
\begin{aligned}
& F_{t t} \in[1.6,4.1] \text { at } 95 \% C L \\
& \text { (to be compared with } F_{t t}=(2.39 \pm 0.12) \text { in the } \mathrm{SM} \text {) }
\end{aligned}
$$

Conclusions

- Different fit methods on the market.

Groups are collaborating trying to understand/quantify the differences.
From the present study the numerical differences in the physics output are small.

- Precise determination of the UT parameters

$$
\begin{gathered}
\bar{\rho}=(0.203 \pm 0.040) \quad \bar{\eta}=(0.355 \pm 0.027) \\
\sin 2 \beta=\left(0.734_{-0.034}^{+0.045}\right) \quad \sin 2 \alpha=\left(-0.20_{-0.20}^{+0.23}\right) \quad \gamma=\left(59.5_{-5.5}^{+6.5}\right)
\end{gathered}
$$

- CP violation picture in the SM is working well!
\triangleright agreement between CP violating measurements and measurements without CP violation information
\triangleright perfect agreement between the direct and the indirect determination of $\sin 2 \beta$.
- Next to come: Δm_{s}.

Expected in the range $[15.2-20.9] p s^{-1}$ at $95 \% \mathrm{CL}$

Conclusions

- Different fit methods on the market.

Groups are collaborating trying to understand/quantify the differences.
From the present study the numerical differences in the physics output are small.

- Precise determination of the UT parameters

$$
\begin{gathered}
\bar{\rho}=(0.203 \pm 0.040) \quad \bar{\eta}=(0.355 \pm 0.027) \\
\sin 2 \beta=\left(0.734_{-0.034}^{+0.045}\right) \quad \sin 2 \alpha=\left(-0.20_{-0.20}^{+0.23}\right) \quad \gamma=\left(59.5_{-5.5}^{+6.5}\right)
\end{gathered}
$$

- CP violation picture in the SM is working well!
\triangleright agreement between CP violating measurements and measurements without CP violation information
\triangleright perfect agreement between the direct and the indirect determination of $\sin 2 \beta$.
- Next to come: Δm_{s}.

Expected in the range $[15.2-20.9] p s^{-1}$ at $95 \% \mathrm{CL}$
...Hoping for surprises !

Backup

Standard set

$\left\|V_{c b}\right\|$	$(40.43 \pm 0.74) 10^{-3}$
	(39-41.9) 10^{-3}
$\bar{\rho}$	$\begin{gathered} 0.203 \pm 0.040 \\ (0.124-0.278) \end{gathered}$
$\bar{\eta}$	0.355 ± 0.027
	(0.302-0.410)
$\sin 2 \beta$	$0.734{ }_{-0.014}^{+0.045}$
	(0.67-0.81)
$\sin 2 \alpha$	$-0.20{ }_{-0.20}^{+0.23}$
	(-0.58-0.22)
${ }^{\gamma}$	$59.5{ }_{-5.5}^{+6.5}$
(degrees)	(49-72)
Δm_{s}	$17.6{ }_{-1.3}^{+1.9} \mathrm{ps}^{-1}$
	$(15.2-20.9) \mathrm{ps}^{-1}$

Chiral logs

$\left\|V_{c b}\right\|$	$(40.43 \pm 0.74) 10^{-3}$
	$(39-41.9) 10^{-3}$
$\bar{\rho}$	$0.177_{-0.044}^{+0.047}$
	$(0.082-0.266)$
$\bar{\eta}$	0.365 ± 0.028
$\sin 2 \beta$	$(0.31-0.42)$
	$0.734_{-0.034}^{+0.045}$
$\sin 2 \alpha$	$(0.67-0.81)$
	$-0.08{ }_{-0.22}^{+0.25}$
γ	$(-0.52-0.40)$
(degrees)	$63.5_{-6.5}^{+7.5}$
Δm_{s}	$18.0_{-1.5}^{+1.7} p^{-1}$
	$(15.4-21.6) p s^{-1}$

Impact of the present constraint from $K \rightarrow \pi \nu \nu$

[^0]: ${ }^{2}$ This average contains the latest measurement from BaBar: $\sin 2 \beta=0.741 \pm 0.067 \pm 0.033$

