Determination of the unitarity triangle parameters

Fabrizio Parodi (University of Genova/I.N.F.N.)

Outline

- Introduction
- Review of the Fit methods
- Results in the SM
- Strategies for the UT determination
- Fit in the Minimal Flavour Violation models
- Conclusions

Based on the Conference papers:

657: M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, F.P., L. Silvestrini, A. Stocchi and P. Roudeau

- 661: A. Buras, F.P. and A. Stocchi
- 959: G.P. Dubois-Felsmann, G. Eigen, D.G. Hitlin and F. C. Porter

Introduction

The weak charged current interaction of quarks is parametrized by the Cabibbo-Kobayashi-Maskawa matrix:

$$\hat{V}_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \\
= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -s_{23}c_{12} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 δ is the phase necessary for CP violation.

From experimental observation we know that s_{13} and s_{23} are small ($\mathcal{O}(10^{-3})$) and $\mathcal{O}(10^{-2})$ respectively).

The \hat{V}_{CKM} can be described by the four independent parameters

$$s_{12} = |V_{us}|, \quad s_{13} = |V_{ub}|, \quad s_{23} = |V_{cb}|, \quad \delta.$$

or (using Wolfenstein param. $s_{12} = \lambda$, $s_{23} = A\lambda^2$, $s_{13}e^{-i\delta} = A\lambda^3(\rho - i\eta)$)¹:

$$|V_{us}| = \lambda, \qquad |V_{cb}|, \qquad \bar{\varrho}, \qquad \bar{\eta}$$

 ${}^{1}\bar{
ho} =
ho(1 - \lambda^{2}/2), \ \bar{\eta} = \eta(1 - \lambda^{2}/2)$

The pair $(\bar{\varrho}, \bar{\eta})$ describes the apex of the unitarity triangle (UT) representing the unitarity relation

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

rescaled by $|V_{cd}V_{cb}^*| = A\lambda^3 = \lambda |V_{cb}|$: $\bar{\varrho} + i\bar{\eta} - 1 + 1 - \bar{\varrho} - i\bar{\eta} = 0$ Sides: R_b, R_t Angles: $\alpha, \beta, \gamma \equiv \delta$

Experimental constraints on the UT:

Fit Methods: Bayesian, Rfit, Scan

Main difference: treatment of the systematical error of the theoretical parameters.

Example: $B_K = 0.86 \pm 0.06_{stat} \pm 0.14_{syst}$

Starting from the same values the allowed regions are different (factor 1.7 at 68% C.L. between Bayesian and Rfit)

Comparison of Bayesian/Rfit

Work started at the CKM Workshop. Aim: improve our understanding of the differences between differenr fit methods comparing their results starting from the same inputs.

Ratio RFit/Bayesian Method				
Parameter	$5\%~{ m CL}$	$1\%~{\sf CL}$	0.1% CL	
$ar{ ho}$	1.42	1.34	1.12	
$ar\eta$	1.18	1.12	1.05	
$\sin 2eta$	1.16	1.16	1.17	
γ°	1.51	1.31	1.09	

Scan method

G.P. Dubois-Felsmann, G. Eigen, D.G. Hitlin and F. C. Porter

Fit for $(\bar{\rho}, \bar{\eta})$ with fixed set of theo. parameters (a "model"):

$$\mathcal{M} = \{F_{D^*}(1), \tilde{\Gamma}_{excl}, f_{B_d} \sqrt{B_{B_d}}, B_K, \xi\}$$

 V_{ub} and V_{cb} : only exclusive measurements are used.

G.P. Dubois-Felsmann, G. Eigen, D.G. Hitlin and F. C. Porter

Fit for $(\bar{\rho}, \bar{\eta})$ with fixed set of theo. parameters (a "model"):

$$\mathcal{M} = \{F_{D^*}(1), \tilde{\Gamma}_{excl}, f_{B_d} \sqrt{B_{B_d}}, B_K, \xi\}$$

 V_{ub} and V_{cb} : only exclusive measurements are used.

Display the consistency of the fit in the theoretical parameters space.

For each pair (T_1,T_2) verify if at least one fit pass a certain χ^2 cut \longrightarrow draw contour Different contours \leftrightarrow different configurations for the undisplayed parameters

Cyclic permutations of the two variables give 3D plots

Inputs for the CKM fit

Standard set:

Parameter	Value	Gaussian σ	Uniform half-width
λ	0.2210	0.0020	-
$ V_{cb} (excl.)$	42.1×10^{-3}	2.1×10^{-3}	-
$ V_{cb} $ (incl.)	40.4×10^{-3}	0.7×10^{-3}	0.8×10^{-3}
$ert V_{cb} ert$ (ave.)	40.6×10^{-3}	0.8	$\times 10^{-3} *$
$ V_{ub} $ (excl.)	32.5×10^{-4}	2.9×10^{-4}	$5.5 imes 10^{-4}$
$ V_{ub} $ (incl.)	40.9×10^{-4}	4.6×10^{-4}	3.6×10^{-4}
$ert V_{ub} ert$ (ave.)	36.3×10^{-4}	3.2	$\times 10^{-4} *$
$ert V_{ub} ert / ert V_{cb} ert$ (ave.)	0.089		0.008*
ΔM_d	$0.503~{ m ps}^{-1}$	$0.006~{ m ps}^{-1}$	-
ΔM_s	$>$ 14.4 ps $^{-1}$ at 95% C.L.	sensitiv	ity 19.2 ps $^{-1}$
m_t	$167\;GeV$	5~GeV	-
sin 2 eta	0.762	0.064	-
\hat{B}_K	0.86	0.06	0.14
$f_{B_d} \sqrt{\hat{B}_{B_d}}$	230 MeV	30 MeV	15 MeV
ξ	1.18	0.03	0.04

New lattice QCD parameters with "chiral logarithms"

$$\begin{array}{cccc} f_{B_d} \sqrt{\hat{B}_{B_d}} & 235 \; MeV & 33 \; MeV & {}^{+0}_{-24} \; MeV \\ \xi = & 1.18 & 0.04 & {}^{+12}_{-0} \end{array}$$

M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, F.P., L. Silvestrini, A. Stocchi and P. Roudeau

$$V_{cb} = (40.43 \pm 0.74)10^{-3}$$

$$\bar{\rho} = (0.203 \pm 0.040)$$

$$\bar{\eta} = (0.355 \pm 0.027)$$

M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, F.P., L. Silvestrini, A. Stocchi and P. Roudeau

$$V_{cb} = (40.43 \pm 0.74)10^{-3}$$

$$\bar{\rho} = (0.203 \pm 0.040)$$

$$\bar{\eta} = (0.355 \pm 0.027)$$

Fit including "chiral logs" syst. in ξ and $f_{B_d}\sqrt{B_{B_d}}$:

$$ar{
ho} = (0.177^{+0.047}_{-0.044}) \ ar{\eta} = (0.365 \pm 0.028)$$

Comparison between sides and angles

Comparing CP violating measurements (ϵ_K , $sin2\beta$) with measuraments without CP-information (Δm_d , Δm_s , $|V_{ub}/V_{cb}|$)

Coherent CP picture in the SM !

Consistency checks and predictions

Fit overconstrained: remove constraints one by one to check their impact and the global consistency

Consistency checks and predictions

Fit overconstrained: remove constraints one by one to check their impact and the global consistency

$sin2eta_{WA}$	$= (0.762 \pm 0.064)$
$sin2eta_{indirect}$	$= (0.715^{+0.055}_{-0.045})$

The two determinations are well in agreement and have similar precisions. Note: real pre-diction !

CKM fits have predicted this value (with slightly larger error) already in 1997. Including the $sin2\beta$ constraint the fit gives:

 $sin2\beta = (0.734^{+0.045}_{-0.034})$

 $^2 {\rm This}$ average contains the latest measurement from BaBar: $sin2\beta = 0.741 \pm 0.067 \pm 0.033$

Strategies for the UT

A. Buras, F.P. and A. Stocchi

The determination of $(\bar{\rho}, \bar{\eta})$ only requires two indipendent measurements.

Questions: fixing the same relative precision which are the most effective pairs of variables among $R_b, R_t, \alpha, \beta, \gamma$?

First divide the variables in two groups: (R_b, β) (R_t, α, γ)

Alternative Set of Parameters

Parameters in Electroweak Gauge Sector

$$\alpha_{QED}, G_F, \sin^2 \theta_W$$

$$\downarrow$$

$$\alpha_{QED}, G_F, M_Z$$

$$\downarrow$$

$$\alpha_{QED}, M_W, M_Z$$

<u>Until 2001</u>

 $|V_{us}|$, $|V_{cb}|$, $ar{
ho}$, $ar{\eta}$

Flavour Sector

No measurements of $\bar{
ho}$ and $\bar{\eta}$ are available

Taking into account experimental feasibility and theoretical cleanness

$$|V_{us}|$$
, $|V_{cb}|$, R_t , eta

appears as a better choice

Present impact of this strategy on the standard parameters:

$$\begin{array}{ccc} \bar{\rho} & \bar{\eta} \\ (R_t(\Delta m_d, \Delta m_s), \beta(sin2\beta)) & 0.241 \pm 0.050 & 0.363 \begin{array}{c} +0.043 \\ -0.040 \\ [0.139\text{-}0.344] & [0.282\text{-}0.449] \\ \text{All the constraints} & 0.203 \pm 0.040 & 0.355 \pm 0.027 \\ [0.124\text{-}0.278] & [0.302\text{-}0.410] \end{array}$$

UT Fit in MFV models

Minimal Flavour Violation models: flavour violation only in V_{CKM} , new physics in the loops. Virtue: all the effects of new physics parametrized in the function F_{tt} (entering in Δm_d and ϵ_K)

A Universal Unitarity Triangle for MFV can be constructed using only measurements that do not depend on F_{tt} : $|V_{ub}/V_{cb}|$, $\Delta m_d/\Delta m_s$ and $sin2\beta$.

Little room for MFV models that, in their prediction, differ from SM.

Adding Δm_d and ϵ_K one can fit F_{tt} :

$$F_{tt} \in [1.6, 4.1]$$
 at 95% CL
(to be compared with $F_{tt} = (2.39 \pm 0.12)$ in the SM)

Conclusions

- Different fit methods on the market. Groups are collaborating trying to understand/quantify the differences. From the present study the numerical differences in the physics output are small.
- Precise determination of the UT parameters

$$\begin{split} \bar{\rho} &= (0.203 \pm 0.040) \quad \bar{\eta} &= (0.355 \pm 0.027) \\ sin2\beta &= (0.734^{+0.045}_{-0.034}) \quad sin2\alpha = (-0.20^{+0.23}_{-0.20}) \quad \gamma = (59.5^{+6.5}_{-5.5}) \end{split}$$

• CP violation picture in the SM is working well !

- agreement between CP violating measurements and measurements without CP violation information
- \triangleright perfect agreement between the direct and the indirect determination of $sin 2\beta$.
- Next to come: Δm_s .

Expected in the range $[15.2 - 20.9] ps^{-1}$ at 95% CL

Conclusions

- Different fit methods on the market. Groups are collaborating trying to understand/quantify the differences. From the present study the numerical differences in the physics output are small.
- Precise determination of the UT parameters

$$\begin{split} \bar{\rho} &= (0.203 \pm 0.040) \quad \bar{\eta} &= (0.355 \pm 0.027) \\ sin2\beta &= (0.734^{+0.045}_{-0.034}) \quad sin2\alpha = (-0.20^{+0.23}_{-0.20}) \quad \gamma = (59.5^{+6.5}_{-5.5}) \end{split}$$

• CP violation picture in the SM is working well !

- agreement between CP violating measurements and measurements without CP violation information
- \triangleright perfect agreement between the direct and the indirect determination of $sin 2\beta$.
- Next to come: Δm_s .

Expected in the range $[15.2 - 20.9] ps^{-1}$ at 95% CL

... Hoping for surprises !

Backup

Standard set

$ V_{cb} $	$(40.43 \pm 0.74)10^{-3}$
	$(39-41.9)10^{-3}$
$ar{ ho}$	0.203 ± 0.040
	(0.124-0.278)
$ar\eta$	0.355 ± 0.027
	(0.302-0.410)
$\sin 2eta$	$0.734 \stackrel{+0.045}{_{-0.034}}$
	(0.67-0.81)
$\sin 2lpha$	$-0.20 \begin{array}{c} +0.23 \\ -0.20 \end{array}$
	(-0.58-0.22)
γ	59.5 $^{+6.5}_{-5.5}$
(degrees)	(49-72)
Δm_s	17.6 $^{+1.9}_{-1.3}~ps^{-1}$
	$(15.2-20.9) \ ps^{-1}$

Chiral logs

$ V_{cb} $	$(40.43 \pm 0.74) 10^{-3}$
	$(39-41.9)10^{-3}$
$\bar{ ho}$	$0.177 \begin{array}{c} +0.047 \\ -0.044 \end{array}$
	(0.082-0.266)
$ar{\eta}$	0.365 ± 0.028
	(0.31-0.42)
$\sin 2eta$	$0.734 \begin{array}{c} +0.045 \\ -0.034 \end{array}$
	(0.67-0.81)
$\sin 2lpha$	-0.08 $^{+0.25}_{-0.22}$
	(-0.52-0.40)
γ	63.5 $^{+7.5}_{-6.5}$
(degrees)	(51-78)
Δm_s	$18.0^{+1.7}_{-1.5} \ ps^{-1}$
	$(15.4-21.6) \ ps^{-1}$

Impact of the present constraint from $K \to \pi \nu \nu$

