Measurement of sin2β at BABAR Douglas Wright Lawrence Livermore National Laboratory For the BABAR Collaboration

Update $B^{0} \rightarrow (c\bar{c})K^{0}$ Update $B^{0} \rightarrow D^{*+}D^{*-}$ New $B^{0} \rightarrow \phi K^{0}{}_{S}$ New $B^{0} \rightarrow J/\psi \pi^{0}$

31st International Conference in High Energy Physics Amsterdam, 24 July 2002

CP violation will arise from complex component of V_{ub} , V_{td}

$B^{O}-\overline{B}^{O}$ mixing introduces time-dependant CP violation

$$\mathbf{f}_{\pm(t)} = \frac{e^{-t/\tau}}{4\tau} \left[\mathbf{1} \mp S_f \sin(\Delta m_d t) \pm C_f \cos(\Delta m_d t) \right]$$

- Theoretically clean: Tree level dominates and CP only from B⁰-B⁰ mixing
- Relatively large branching fractions

Clear experimental signatures

$$A_{CP}(t) = \frac{f_{+} - f_{-}}{f_{+} + f_{-}} = -\eta_f \sin 2\beta \sin(\Delta m_d t)$$

Experimental technique at the Υ (4S) resonance

SLAC B Factory performance

BABAR Detector

SVT:97% efficiency, 15 μ m z hit resolution (inner layers, perp. tracks)SVT+DCH: $\sigma(p_T)/p_T = 0.13 \% \times p_T + 0.45 \%$ DIRC:K- π separation 4.2 σ @ 3.0 GeV/c \rightarrow 2.5 σ @ 4.0 GeV/cEMC: $\sigma_E/E = 2.3 \% \cdot E^{-1/4} \oplus 1.9 \%$

Vertex and Δt Reconstruction

8

- All charged tracks not in B_{rec}
- Determine B_{Tag} vertex from

(to reject charm decays)

B_{REC} Vertex **B**_{REC} daughters **Interaction** Point TAG Vertex B_{TAG} direction TAG tracks

- High efficiency: 95%
- Average Δz resolution ~ 180 μ m (dominated by B_{Tag}) $(<|\Delta z| > ~ 260 \ \mu m)$
- Δt resolution function measured from data

Using tracks with or without particle identification, and kinematic variables, a multilevel neural network assigns each event to one of five mutually-exclusive categories:

- Lepton tag: primary leptons from semileptonic decay
- Kaon1 tag: high quality kaons, correlated *K* and π_s^+ (from D^*)
- Kaon2 tag: lower quality kaons, π_s from D^*
- Inclusive tag: unidentified leptons, low quality K, π , leptons
- No tag: event is not used for CP analysis

New and improved tagging method

- Need to know mistag fraction w and ∆t resolution function R in order to measure CP asymmetry.
- Can extract these from data with $B^0 \overline{B}^0$ mixing events.

Fully reconstruct self-tagged modes:

• Apply B_{tag} to other side, fit for $B^0 - \overline{B}^0$ mixing

$$f_{\text{Unmixed}}(\Delta t) = \left\{ \frac{e^{-\left|\Delta t\right|/\tau}}{4\tau_B} \left[1 \pm (1 - 2w)\cos(\Delta m_d \Delta t) \right] \right\} \otimes R$$

B_{flav} sample is x10 size of CP sample

Tagging performance from B_{flav} sample

Total	65.6 ± 0.5		28.1 ± 0.7
Inclusive	20.0 ± 0.3	$\textbf{31.6} \pm \textbf{0.9}$	2.7 ± 0.3
Kaon2	19.8 ± 0.3	$\textbf{20.9} \pm \textbf{0.8}$	6.7 ± 0.4
Kaon1	16.7 ± 0.2	9.9 ± 0.7	10.7 ± 0.4

This new tagging method increases Q by 7% compared to the method used in our previous result: PRL87 (Aug 01).

$\sin 2\beta$ golden sample: $(c\bar{c})K_S$ ($\eta_f = -1$)

sin2 β samples: $J/\psi K_L$ and $J/\psi K^{*0}$

- Use m_B constraint to determine p_{KL}
- J/\u03c6 background shape estimated from Monte Carlo
- Fake J/\u03c6 background shape estimated from data sidebands

- Vector-Vector mode: mixture of CP+ and CP-
- Use angular analysis to determine CP- fraction
- Treat CP- component as dilution \Rightarrow effective η_f

Fit Parameters

 $\sin 2\beta$ Mistag fractions *w* for B^0 and B^0 tags Signal Δt resolution function *R* Background properties (mostly from m_{ES} sidebands in data)

B lifetime fixed (PDG 2002) Mixing frequency fixed (PDG 2002) 34 total ¹ B_{CP} 8 B_{flav}

8

17

B_{flav} B_{CP}+B_{flav}

 $\tau_{B} = 1.542 \text{ ps}$ $\Delta m_{d} = 0.489 \text{ ps}^{-1}$

Fit results

 $sin2\beta = 0.741 \pm 0.067 \text{ (stat)} \pm 0.033 \text{ (sys)}$

$sin2\beta$ fit results by decay mode

 $(c\overline{c})K_{S}$ with lepton tag

 $N_{tagged} = 220$ Purity = 98%

Mistag fraction 3.3%

 $\sigma_{\Delta t}$ 20% better than other tag categories

Cross-check on data control samples

Observed no asymmetry as expected

	<u>σ(sin2β)</u>
Description of background events	0.017
CP content of background components	
Background shape uncertainties	
Composition and content of $J/\psi K_L$ background	0.015
Δt resolution and detector effects	0.017
Silicon detector alignment uncertainty	
Δt resolution model	
Mistag differences between B _{CP} and B _{flav} samples	0.012
Fit bias correction	0.010
Fixed lifetime and oscillation frequency	<u>0.005</u>
TOTAL	0.033

Steadily reducing systematic error:	July 2002 = 0.033
	July $2001 = 0.05$

Standard Model comparison

One solution for β is in excellent agreement with measurements of unitarity triangle apex

$$\rho = \rho (1 - \lambda^2/2)$$
$$\eta = \eta (1 - \lambda^2/2)$$

Search for non-Standard Model effects in $(c\bar{c})K_S$

If another amplitude (new physics) contributes a different phase, then

$$A_{CP}(\Delta t) = S_f \sin(\Delta m d\Delta t) - C_f \cos(\Delta m d\Delta t)$$
$$S_f = \frac{2 \operatorname{Im} \lambda_f}{1 + |\lambda_f|^2} \qquad C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}$$

• In the Standard Model $|\lambda_f| = 1$ (which we assume in the nominal sin2 β fit)

0

$$S_f \rightarrow \neg \eta_f \sin 2\beta \qquad C_f \rightarrow$$

• Fit $|\lambda_f|$ and S_f using the clean $(c\bar{c})K_s$ modes $(\eta_f = -1, N_{tagged} = 1506, Purity = 92\%)$:

 $|\lambda_f| = 0.948 \pm 0.051 \text{ (stat)} \pm 0.017 \text{ (syst)}$ $S_f = 0.759 \pm 0.074 \text{ (stat)} \pm 0.032 \text{ (syst)}$

Consistent with the Standard Model expectation of $|\lambda_f|=1$ and nominal fit sin2 $\beta = 0.755 \pm 0.074$ for $(c\bar{c})K_s$ modes alone.

(b \rightarrow ccd) mode $B^0 \rightarrow D^{*+}D^{*-}$

- Cabbibo-suppressed mode with tree level weak phase same as $b \rightarrow c\bar{c}s$
- Penguin contribution uncertain, expected to be small < 0.1 Tree
- Not a CP eigenstate, mixture of CP even (L=0,2) and CP odd (L=1)
 - Resolve using angular analysis (in transversity basis)

Reconstruct $D^{*+} \rightarrow D^{0}\pi^{+}$ or $D^{+}\pi^{0}$, but not both to π^{0} mode

CP composition of $B^0 \rightarrow D^{*+}D^{*-}$

• We measure CP odd fraction (corrected for acceptance) to be small: $R_{\perp} = 0.07 \pm 0.06 \text{ (stat)} \pm 0.03 \text{ (syst)}$

CP asymmetry fit $B^0 \rightarrow D^{*+}D^{*-}$

- Improved fitting strategy since winter conferences:
 - Parameterize in terms of CP even (λ_+) and odd (λ_{\perp}) components, include angular information from partial-wave analysis
 - Fix CP odd component to λ_{\perp} =1, Im(λ_{\perp}) = -0.741

 $|\lambda_+| = 0.98 \pm 0.25 \text{ (stat)} \pm 0.09 \text{ (syst)}$ Im $(\lambda_+) = 0.31 \pm 0.43 \text{ (stat)} \pm 0.10 \text{ (syst)}$

> If penguins are negligible, then $Im(\lambda_+) = -\sin 2\beta$

Im(λ_+) measurement ~2.7 σ from BaBar sin2 β in charmonium, assuming no penguins.

(b \rightarrow ccd) mode $B^0 \rightarrow D^{*+}D^{-}$

- *D*D* not CP eigenstate
- Possible strong phase contribution (and still have penguins)
- Different (but related) decay time distributions for $B^0 \rightarrow D^{*+}D^{-}$ $B^0 \rightarrow D^{*-} D^+$

 $S_{+-} = -0.43 \pm 1.41 \pm 0.20$

 $C_{\perp} = 0.53 \pm 0.74 \pm 0.13$

 $S_{-+} = 0.38 \pm 0.88 \pm 0.05$

 $C_{-+} = 0.30 \pm 0.50 \pm 0.08$

$$B^{0} \stackrel{b}{a} \stackrel{c}{d} \stackrel{c}{D^{*+}} \stackrel{c}{d} \stackrel{d}{D^{*-}} \stackrel{d}{d} \stackrel{d}$$

Update to full data set in progress

 \mathbf{R}^0

m_{ES}

 Cabibbo and color-suppressed mode with comparable tree and penguin contributions

(b \rightarrow ccd) mode $B^{0} \rightarrow J/\psi \pi^{0}$

Penguin: $\sim V_{cb}V_{cd}^* + V_{ub}V_{ud}^* \sim O(\lambda^3)$ adds additional weak phase

CP asymmetry fit for $B^0 \rightarrow J/\psi \pi^0$

In absence of penguins $C_{\psi\pi}=0$, $S_{\psi\pi}=-\sin 2\beta$

$sin2\beta$ from penguin mode $B^0 \rightarrow \phi K_S$

- Charmless decay dominated by (b \rightarrow sss) gluonic penguins
 - Weak phase same as $b \rightarrow c\bar{c}s$, but sensitive to new physics in loops

- Small branching fraction O(10⁻⁵)
- Significant background from qq
 continuum
- Using only $\phi \to K^+ K^-$

 $N_{tagged} = 66$ Purity = 50%

$$\eta_f = -1$$

5.23

5.24

5.25

5.26

5.27

5.28

5.29

m_{ES} (GeV)

5.3

CP asymmetry fit for $B^0 \rightarrow \phi K_S$

• Fix $|\lambda_{\phi K}| = 1$, fit: $S_{\phi K} = -0.19 + 0.52 - 0.50$ (stat) ± 0.09 (syst)

- Cross check on $B^+ \rightarrow \phi K^+$ $S_{\phi K} = 0.26 \pm 0.27$
- Analysis of $B^0 \to \eta' K_S$ in progress

If no new physics,
$$S_{\phi K} = sin 2\beta$$

Conclusion

• New measurement of $\sin 2\beta$ from charmonium modes (88 x10⁶ $B\overline{B}$)

Results have been improving by more than just luminosity gain

The Standard Model remains unscathed, but the high statistics future of BaBar will provide further opportunities to challenge the theory.

$sin2\beta$ in subsamples

Category	Efficiency (ε)	Mistag Fr. (ω)	δ Mistag	$Q = \varepsilon (1 - 2\omega)^2$
Lepton	$\textbf{9.1}\pm\textbf{0.2}$	$\textbf{3.3} \pm \textbf{0.6}$	$\textbf{-1.4} \pm \textbf{1.1}$	7.9 ± 0.3
KPiorK	$\textbf{16.7} \pm \textbf{0.2}$	9.9 ± 0.7	-1.1 ± 1.1	$\textbf{10.7} \pm \textbf{0.4}$
KorPi	$\textbf{19.8} \pm \textbf{0.3}$	$\textbf{20.9} \pm \textbf{0.8}$	-4.2 ± 1.1	$\textbf{6.7} \pm \textbf{0.4}$
Inclusive	$\textbf{20.0} \pm \textbf{0.3}$	$\textbf{31.6} \pm \textbf{0.9}$	-2.0 ± 1.2	$\textbf{2.7} \pm \textbf{0.3}$
Total	65.6 ± 0.5			28.1 ± 0.7

We evaluated the size of any potential bias on $sin2\beta$ by fitting the full MC in two ways:

 Fitting data-sized signal MC samples with mistag fractions and ∆t resolution fixed to the MC truth values (see plot).

Average bias = $+0.012 \pm 0.005$.

• Same as above except mistag fractions and Δt resolution from Breco MC.

Average bias = $+0.014 \pm 0.005$.

- One possible source of bias comes from neglecting the known correlation between the mistag fractions (or dilutions) and sigma Δt .
 - Estimates from toy and full MC inticate a bias at the level of +0.004.
- We correct the fitted $\sin 2\beta$ by subtracting **0.014** and assign a systematic error of **0.010** to this correction.

