Measurements of time dependent CP asymmetry in B→VV decays with BELLE

Ryosuke Itoh, KEK

representing The Belle Collaboration

Parallel Session : 7, ICHEP02, Amsterdam, 7/26/02

- 1. Introduction
- 2. Full time-dependent angular analysis for $B^0 \rightarrow J/\psi K^{*0}$
- 3. Time-integrated angular analysis for a) $B^0 \rightarrow D^{*+}D^{*-}$ b) $B^0 \rightarrow D^{*-}\rho^+$ c) $B^+ \rightarrow \rho^+ \rho^0$

4. Summary

1. Introduction

• There are 3 helicity states in the final state of $B \rightarrow VV$ decay

• CP even and odd states are mixed in the final states \rightarrow causes the dilution in the CP asymmetry

• Using angular analysis, it is possible to project out each CP state in a statistical way.

 \rightarrow useful to minimize the dilution

Definition of angles

Two definitions of angles

<u>CP violation in angular distribution</u>

- There are 6 components in the differential angular cross section for B→VV decay.
 - components for three helicity states (3)
 - components for interferences between helicity states (3)
- Each term is a product of angular term and amplitude term.
- Amplitude terms contain CP violating phase(s) as a function of Δt (decay time difference between two B mesons from Y(4S) decay) i.e. sin2φ_w sinΔmΔt, etc.

Fitting measured angles and Δt to the cross section formula \rightarrow determination of ϕ_{m}

Interference term is a rich source of interesting physics
 - cos2φ₁ measurement (J/ψK*)

- simultaneous determination of r and $sin(2\phi_1 + \phi_2)$ (D* ρ)

Belle

B factory experiment at KEK in Japan

KEKB Accelerator

Belle Detector

BELLE-CONF-0212(ABS700)

2. $B^0 \rightarrow J/\psi K^{*0}(K_\pi^0)$

Integrated luminosity used for the analysis : 78fb⁻¹ Event selection :

 J/ψ : reconstructed using dilepton(e⁺e⁻, $\mu^+\mu^-$) decay.

- K* : $|M(K_s \pi^0) M(K^{*0})| < 75 MeV/c^2$
- B^0 : 5.27 < $M_{\rm hc}$ < 5.29 GeV/c²

$$-0.05 < \Delta E < 0.03 \text{ GeV}$$

slow π^0 rejection : cos θ_1 (K* helicity angle) < 0.8

Mbc : invariant mass calculated assuming the energy to be beam energy
∆E : difference between reconstructed B candidate and beam energy
→ 103 events remain
+ vertex quality selection
->used for CP fit
* vertex reconstruction / flavor determination
→ covered by other talk

Time-dependent angular distribution

(Transversity basis)

$$\begin{split} \frac{d\Gamma}{d\cos\vartheta_{\prime\prime}d\phi\,d\cos\vartheta_{\kappa^*}d\,\Delta t} &= \frac{9}{32\pi} \frac{e^{-|\Delta t|}/\tau_B}{2\tau_B} \sum_{i=1.6} f_i(\vartheta_{\prime\prime},\phi,\vartheta_{\kappa^*})a_i(\Delta t) \\ f_1 &= 2\cos^2\vartheta_{\kappa^*}(1-\sin^2\vartheta_{\prime\prime}\cos^2\phi) & a_1 &= \left|A_0\right|^2 (1+\eta\sin2\phi_1\sin\Delta m\Delta t) \\ f_2 &= \sin^2\vartheta_{\kappa^*}(1-\sin^2\vartheta_{\prime\prime}\sin^2\phi) & a_2 &= \left|A_{\prime\prime}\right|^2 (1+\eta\sin2\phi_1\sin\Delta m\Delta t) \\ f_3 &= \sin^2\vartheta_{\kappa^*}\sin^2\vartheta_{\prime\prime} & a_3 &= \left|A_{\prime\prime}\right|^2 (1-\eta\sin2\phi_1\sin\Delta m\Delta t) \\ f_4 &= \frac{-1}{\sqrt{2}}\sin2\vartheta_{\kappa^*}\sin^2\vartheta_{\prime\prime}\sin\phi & a_4 &= \Re(A_{\prime\prime}^*A_0)(1+\eta\sin2\phi_1\sin\Delta m\Delta t) \\ f_5 &= \sin^2\vartheta_{\kappa^*}\sin^2\vartheta_{\prime\prime}\sin\phi & a_5 &= \eta\Im(A_{\prime\prime}^*A_{\prime\prime})\cos\Delta m\Delta t - \eta\Re(A_{\prime\prime}^*A_{\prime\prime})\cos2\phi_1\sin\Delta m\Delta t \\ f_6 &= \frac{1}{\sqrt{2}}\sin2\vartheta_{\kappa^*}\sin2\vartheta_{\prime\prime}\cos\phi & a_6 &= \eta\Im(A_0^*A_{\prime\prime})\cos\Delta m\Delta t - \eta\Re(A_0^*A_{\prime\prime})\cos2\phi_1\sin\Delta m\Delta t \end{split}$$

* $A_0, A_{//}, A_T$: helicity amplutudes * $\Delta m, \tau_B$: mixing parameter, B lifetime $cos2\phi_1$ appears in interference terms! \rightarrow useful to solve 2-fold ambiguity in 2 ϕ_1 measured from sin2 ϕ_1

Time-integrated angular analysis BELLE-CONF-0213(ABS701)

- $-A_0, A_{\mu}$ and A_T can be determined by the fit to angular distributions only (time-integrated distributions).
- -Non-CP decays (B⁰ \rightarrow J/ ψ K^{*0}(K⁺ π^{-}), B⁺ \rightarrow J/ ψ K^{*+}(K⁺ π^{0} ,K_s π^{+})) are used
 - $(29.4/fb) \leftarrow *$ higher statistics than CP decay $(B^0 \rightarrow J/\psi K^*(K_s \pi^0))$

$$|A_0|^2 + |A_{//}|^2 + |A_T|^2 = 1$$

arg(A_0) = 0.0

$$|A_{0}|^{2} = 0.62 \pm 0.02 \pm 0.03$$

$$|A_{T}|^{2} = 0.19 \pm 0.02 \pm 0.03$$

$$arg(A_{//}) = 2.83 \pm 0.19 \pm 0.08$$

$$arg(A_{T}) = -0.09 \pm 0.13 \pm 0.06$$

Free sin

ICHEP02(P7), 7/26/02, R. Itoh

parameters:

 $12\phi_1$ and $\cos 2\phi_2$

Probability Density Function (PDF) for CP fit

- Determination of sin $2\phi_1$ and $\cos 2\phi_1$ is done by the unbinned maximum likelihood fit to 3 transversity angles and Δt obtained event by event.
- PDF for the fit is constructed with following effects
 - 1) Detector acceptance for angular distributions
 - as done for time-integrated analysis
 - parameterized 3D efficiency function obtained by MC
 - 2) Background fractions and angular shapes
 - * feed across from other $J/\psi K^*$ subdecays
 - * non-resonant production of $B \rightarrow J/\psi + K + \pi$
 - * combinatorial background
 - obtained from MC and M_{ho} sideband data
 - angular shapes are parameterized in 3D polynomials.
 - 3) ∆t resolution of measurement
 4) Wrong tagging effect
 b) treated in the same manner as those in Belle's standard CP analysis

$$\begin{split} PDF\left(M_{bc}, \vartheta_{tr}, \varphi_{tr}, \vartheta_{K^{*}}, \Delta t\right) &= \\ & f_{sig}(M_{bc}) eff\left(\vartheta_{tr}, \varphi_{tr}, \vartheta_{K^{*}}\right) TADF\left(\vartheta_{tr}, \varphi_{tr}, \vartheta_{K^{*}}, \Delta t; \varphi_{1}\right) \\ & + \sum_{BG \text{ sources}} f_{bg}(M_{bc}) TADF_{BG}(\vartheta_{tr}, \varphi_{tr}, \vartheta_{K^{*}}, \Delta t) \end{split}$$

Background TADF :

feed across :
$$e^{-|\Delta t|/\tau_{B}}/2\tau_{B} \times ADF_{fa}(\vartheta_{tr}, \phi_{tr}, \vartheta_{K^{*}})$$

non-resonant : $e^{-|\Delta t|/\tau_{B}}/2\tau_{B} \times ADF_{nr}(\vartheta_{tr}, \phi_{tr}, \vartheta_{K^{*}})$
combinatorial : $\delta(\Delta t) \times ADF_{combi}(\vartheta_{tr}, \phi_{tr}, \vartheta_{K^{*}})$

* η is replaced with -q(1-2w) in signal TADF
(q = tagging flavor (±1), w = wrong tagging fraction)
* PDF is convoluted with proper resolution function for each term

Results

$$\begin{aligned} \sin 2\phi_1 &= 0.13 \pm 0.51 \pm 0.06 \\ \cos 2\phi_1 &= 1.40 \pm 1.28 \pm 0.19 \\ \text{c.f. 2D fit } (\cos\theta_{\text{tr}} \text{ only}) : \sin 2\phi_1 &= 0.04 \pm 0.64 \end{aligned}$$

Systematic error estimation

Item	$\delta sin2\phi_1$	$\delta \cos 2\phi_1$
Resolution parameters	±0.024	±0.092
Wrong tagging fractions	± 0.019	± 0.041
Helicity amplitudes	± 0.042	± 0.158
Background fraction	± 0.012	± 0.012
Angular shape for BG	±0.023	± 0.034
Δt distribution for $\delta(t)$ BG	± 0.009	± 0.010
$\tau_{_{ m B}}$ and $\Delta { m m}$	±0.013	±0.011
Total	± 0.06	±0.19

Δt distributions

Lines show the prediction by PDF with obtained CP parameter values

Discussion

- sign of cos2 ϕ_1

* 2-fold ambiguity in the choice in phases of helicity amplitudes (M.Suzuki, PRD 64, 117503) 1) $\phi_{\parallel} = 2.8 \text{ rad.}, \phi_{\perp} = -0.09 \text{ rad.} (\text{s-quark helicity conserved})$ \rightarrow used to obtain shown values 2) $\phi_{\parallel} \rightarrow -\phi_{\parallel}$ and $\phi_{\perp} \rightarrow \pi - \phi_{\perp}$ (cannot exclude this) \rightarrow the sign of cos $2\phi_1$ flips while sin $2\phi_1$ does not change $\cos 2\phi_1 = -1.31 \pm 1.28 \pm 0.19$

– Comparison with other measurements

	sin2\$	$\cos 2\phi_1$
BaBar	$0.22 \pm 0.52^{(*1)}$	$+3.3 (+0.6-1.0) (+0.6-0.7)^{(*2)}$
Belle	$0.13 \pm 0.51 \pm 0.06$	$+1.40 \pm 1.28 \pm 0.19$
	$0.82 (\text{fixed})^{(*3)}$	$+1.02 \pm 1.16$

(*1) hep-ex/0207042, (*2) obtained in global CP fit, hep-ex/0203007, (*3) value shown at Moriond conf.

3. Other channels

Time-dependent analysis is still in preparation for following modes.
 Status of time-integrated analysis is discussed

0

-0.75

-0.5 -0.25

0 0.25

cos 0,

0.5

0.75

a) $B \rightarrow D^{*+}D^{*-}$ (for sin $2\phi_1$ determination)

$$\frac{d T}{d \cos \theta_{tr}} = \frac{3}{4} (1 - R_T) \sin^2 \theta_{tr} + \frac{3}{2} R_T \cos^2 \theta_{tr}$$

$$\frac{7}{22.5}$$
10
7.5
15
12.5
10
7.5
5
5
2.5

b) $B \rightarrow D^* \rho$ (for $\sin(2\phi_1 + \phi_3)$ determination)

- Fit to projected helicity angles

 \rightarrow Transversity amplitudes with imaginary parts

$$\frac{d\Gamma}{d\cos\theta_{i}} = \frac{4\pi}{3} |A_{0}|^{2} \cos^{2}\theta_{i} + \frac{2\pi}{3} (|A_{T}|^{2} + |A_{//}|^{2}) \sin^{2}\theta_{i}$$
$$\frac{d\Gamma}{d\phi} = (\frac{4}{9} |A_{0}|^{2} + \frac{8}{9} |A_{T}|^{2}) \sin^{2}\phi + (\frac{4}{9} |A_{0}|^{2} + \frac{8}{9} |A_{//}|^{2}) \cos^{2}\phi$$

Interference components appears in "half projected" angular distribution

 $\Delta = (Q1 + Q3) - (Q2 + Q4)$ $\frac{d\Delta}{d\phi} = \frac{-8}{9\sqrt{2}} \Im(A_0^*A_T) \sin\phi + \frac{8}{9\sqrt{2}} \Re(A_0^*A_{//}) \cos\phi$

Exp 7-19 B^0 or $B^0b \rightarrow f$ or fb (rho sub) (eff corr) Entries 10194 ALLCHAN 4248. χ^2/ndf 16.87 / 7 500 $sin^2\phi$ $417.7_{|} \pm$ 17.21 $\cos^2\phi$ 430.1 ± 17.59 17.91 ± 14.35 sin2¢ 400 300 200 100 00 2 3 Phi 5 4 6

Helicity amplitudes for $B \rightarrow D^* \rho$ will be determined soon.

c) $B^+ \rightarrow \rho^+ \rho^0$ – Detail is covered by other talk (A.Gordon in HQ-3)

$$1 - \frac{\Gamma_T}{\Gamma} = 0.92 \pm 0.61$$

5. Summary

• Full time–dependent angular analysis is performed for $B \rightarrow J/\psi K^*$ decays collected with Belle detector at KEK B–factory.

• CP violation parameters $\sin 2\phi_1$ and $\cos 2\phi_1$ are determined to be $\sin 2\phi_1 = +0.13 \pm 0.51 \pm 0.06$ $\cos 2\phi_1 = +1.40 \pm 1.28 \pm 0.19$

• When fixing $\sin 2\phi_1 = +0.82$, $\cos 2\phi_1 = +1.02 \pm 1.16$

Taking s-quark helicity conservation choice of amplitude phases, obtained sign of cos2\$\ophi_1\$ prefers 2\$\ophi_1\$ = 55° with sin2\$\ophi_1\$ =+0.82 (namely, choice of 2\$\ophi_1\$ = 145° is not prefered) although statistical error is still too large.

• The angular analysis for other modes are in progress. ICHEP02(P7), 7/26/02, R. Itoh

Backup Slides

" $\cos 2f1$ " = -0.01 ± 0.18

Ensemble test

- 500 sets of samples with 100 events are fitted and the distributions of output are checked. (Input: $\sin 2\phi_1 = 0.8$, $\cos 2\phi_1 = 0.6$)

