CP-Violating Asymmetries in Charmless B Decays: Towards a measurement of α

On behalf of the BaBar Collaboration

International Conference on High Energy Physics Amsterdam, July 24-31, 2002

James D. Olsen

Princeton University

CP asymmetries in $\pi^+\pi^-$ and $K^+\pi^-$ Submitted to Phys Rev (hep-ex/0207055) Decay rates for $\pi^+\pi^0$ and $\pi^0\pi^0$ hep-ex/0207065 and hep-ex/0207063 CP asymmetries in $\rho^+\pi^-$ and $\rho^+K^$ hep-ex/0207068

CP Violation in the Standard Model

- CP symmetry can be violated in any field theory with at least one irremovable complex phase in the Lagrangian
- This condition is satisfied in the Standard Model through the threegeneration Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix

Unitarity Triangle $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

The angles (α, β, γ) are related to CP-violating asymmetries in specific B decays

One down, two to go…

 $\sin 2\beta_{\rm BaBar} = 0.741 \pm 0.067 \pm 0.033$ *ICHEP 2002*

Observing CP violation at the Y(4S)

- At the $\Upsilon(4S)$, $B\overline{B}$ pairs are produced in a coherent P-wave
- Three observable interference effects:
 - □ CP violation in mixing $(|q/p| \neq 1)$
 - □ (direct) CP violation in decay ($|\overline{A}/A| \neq 1$)
 - (indirect) CP violation in mixing and decay (Im $\lambda \neq 0$)

Observable in time evolution of
$$B^{
ho}\overline{B^{
ho}}$$
 system (assume $\Delta\Gamma=0$)

$$\begin{split} f(\overline{B}_{phys}^{0} \to f_{CP}, \Delta t) &= \frac{\Gamma}{4} e^{-\Gamma |\Delta t|} \Big[1 + S_{f_{CP}} \sin(\Delta m_{d} \Delta t) - C_{f_{CP}} \cos(\Delta m_{d} \Delta t) \Big] \\ f(B_{phys}^{0} \to f_{CP}, \Delta t) &= \frac{\Gamma}{4} e^{-\Gamma |\Delta t|} \Big[1 - S_{f_{CP}} \sin(\Delta m_{d} \Delta t) + C_{f_{CP}} \cos(\Delta m_{d} \Delta t) \Big] \\ \text{direct CP violation} \to C \neq 0 \\ \text{indirect CP violation} \to S \neq 0 \end{split} \qquad S_{f} = \frac{2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^{2}} \qquad C_{f} = \frac{1 - |\lambda_{f_{CP}}|^{2}}{1 + |\lambda_{f_{CP}}|^{2}} \end{split}$$

CP Violation in $B^0 \rightarrow \pi^+\pi^-$

Tree (T) Level:

from $\alpha_{eff} \rightarrow$ isospin analysis

Overview of Analyses

- Analysis issues: charmless B decays
 - □ Rare decays! BR ~ 10^{-5} - 10^{-6} → need lots of data (PEP-II)
 - Backgrounds:
 - Large background from $e^+e^- \rightarrow q\overline{q} \rightarrow$ need background suppression
 - Modes with π^0 suffer backgrounds from other B decays
 - Ambiguity between π and K \rightarrow need excellent particle ID (DIRC)
- Time-dependent CP analysis issues:
 - $\hfill\square$ Need to determine vertex position of both B mesons \rightarrow silicon
 - $\hfill\square$ Need to know the flavor of "other" $B \to particle \ ID$
- We use maximum likelihood (ML) fits to extract signal yields and CP-violating asymmetries
 - Kinematic and topological information to separate signal from lightquark background
 - Particle ID to separate pions and kaons
- The data sample corresponds to 87.9 million BB pairs

K/π Separation with the DIRC

- Cherenkov angle θ_c used in the maximum likelihood fit to distinguish pions and kaons
- Resolution and K-π separation measured in data

Analysis of $B \rightarrow \pi \pi$, $K\pi$, KK

- Analysis proceeds in two steps:
 - Time-independent fit for yields and $K\pi$ charge asymmetry
 - Time-dependent fit for $S_{\pi\pi}$, and $C_{\pi\pi}$
- Kinematically select B candidates with m_{ES} , ΔE

$$m_{\rm ES} = \sqrt{E_{\rm beam}^{*2} - p_B^{*2}} \qquad \Delta E = E_B^* - E_{\rm beam}^*$$

- Suppress $q\bar{q}$ background with Fisher discriminant $F = 0.53 - 0.60 \times \sum_{i} p_{i}^{*} + 1.27 \times \sum_{i} p_{i}^{*} |\cos(\theta_{i}^{*})|^{2}$
- Fit yields and charge asymmetry $A_{CP}^{K\pi} \equiv \frac{N(K^{-}\pi^{+}) - N(K^{+}\pi^{-})}{N(K^{-}\pi^{+}) + N(K^{+}\pi^{-})}$

 π^+

Branching Fraction Results

Submitted to Phys Rev (hep-ex/0207055)

 87.9 ± 1.1 million $B\overline{B}$

Mode	Yield	BR (10⁻ ⁶)	Α _{CP} (Κπ)
$B^{0} \rightarrow \pi^{+}\pi^{-}$	157 ± 19	$4.7 \pm 0.6 \pm 0.2$	
	589 ± 30	$17.9 \pm 0.9 \pm 0.7$	$-0.102 \pm 0.050 \pm 0.016$
$B^0 \longrightarrow K^+K^-$	1±8	< 0.6 (90% CL)	

Projections in m_{ES} and ΔE

Preliminary

B Flavor Tagging

- New tagging algorithm with physics-based neural networks
 - Inputs include leptons, kaons, slow-π (from D*), and high-momentum tracks
 - Outputs combined and categorized by mistag prob (w)
- 5 mutually exclusive categories:
 - Lepton isolated high-momentum leptons
 - □ Kaon I high quality kaons or correlated K⁻ and slow- π^+
 - □ Kaon II lower quality kaons, or slow- π
 - Inclusive unidentified leptons, poor-quality kaons, highmomentum tracks
 - Untagged no flavor information is used

~7% improvement in $Q = \varepsilon (1-2w)^2$

b

Tagging in Charmless B Decays

- Tagging efficiency is very different for signal and bkg
 - Strong bkg suppression in categories with the lowest mistag prob (Lepton/Kaon)
 - Different bkg tagging efficiencies for ππ, Kπ, KK

Tagging Efficiencies (%)

Category	Signal	Background			
		ππ	Kπ	KK	10
Lepton	9.1	0.5	0.4	0.6	
Kaon I	16.6	8.9	12.7	7.8	5
Kaon II	19.8	15.5	19.4	14.4	
Inclusive	20.1	21.5	19.2	21.7	
Untagged	34.4	53.6	48.3	55.6	

81/fb $B \rightarrow h^+h^-$ sample split by tagging category

Validation of Tagging, Vertexing, and ML Fit

Fit projection in sample of $K\pi$ *-selected events*

CP Asymmetry Results

Fit projection in sample of $\pi\pi$ -selected events

ICHEP 2002

Cross-checks

- Inspect ππ-selected sample
 - 2-param fit consistent with full fit
 - □ asymmetry vs. m_{ES}
 - Asymmetry in yields consistent with measured value of C_{ππ}, but does not suggest large direct CP violation
- Toy MC generated over all allowed values of $S_{\pi\pi}$ and $C_{\pi\pi}$
 - Expected errors consistent with data
 - No significant bias observed
- Validated in large samples of signal and background MC events
- Systematic errors dominated by uncertainty in PDF shapes

Taming the Penguins: Isospin Analysis

Gronau and London, Phys. Rev. Lett. 65, 3381 (1991)

- The decays $B \rightarrow \pi^+\pi^-$, $\pi^+\pi^0$, $\pi^0\pi^0$ are related by isospin
- Central observation is that $\pi\pi$ states can have I = 2 or 0
 - □ (gluonic) penguins only contribute to I = 0 ($\Delta I = 1/2$)
 - □ $\pi^+\pi^0$ is pure I = 2 (Δ I = 1/2) so has only tree amplitude → ($|A^{+0}| = |A^{-0}|$)
- Triangle relations allow determination of penguininduced shift in α 2 α = 2 α + κ

But, need branching fractions for all three decay modes, and for B^0 and $\overline{B^0}$ separately

The Base of the Isospin Triangle: $B^+ \rightarrow \pi^+ \pi^0$

- Analysis issues:
 - Usual charmless two-body; large qq background, π/K separation
 - - Minimize with tight cut on ΔE

Simultaneous fit to $\pi\pi^{0}/K\pi^{0}$

Mode	Yield	d	BR (10⁻⁰)		A _{CP}
$B^+ \rightarrow \pi^+ \pi^0$	125^{+23}_{-21}		$5.5^{+1.0}_{-0.9} \pm 0.6$		$-0.03^{+0.18}_{-0.17}\pm0.02$
$B^+ \rightarrow K^+ \pi^0$	239^{+21}_{-22}		12.8^{+1}_{-1}	$^{1.2}_{-1}\pm1.0$	$-0.09 \pm 0.09 \pm 0.01$
Preliminary		hep-ex/0207065			

ICHEP 2002

ICHEP 2002

 $N_{\pi^0\pi^0} = 23^{+10}_{-9}$ Preliminary $B(B^0 \to \pi^0 \pi^0) < 3.6 \times 10^{-6}$ @ 90% C.L.

Background suppression:

Cut on M($\pi^+\pi^0$) and ΔE to

Event shape and flavor tagging

reduce $\rho \pi^0$ background, then fix

Analysis issues:

Small signal!

 $\rho\pi^0$ feeddown

to reduce $q\overline{q}$

in the fit

hep-ex/0207063

Significance including systematic errors = 2.5σ

J. Olsen

Setting a Bound on Penguin Pollution

- Can still get information on α with only an upper bound on $\pi^0\pi^0$:
 - For example: Grossman-Quinn bound (assume only isospin)

$$\sin^{2}(\alpha_{\text{eff}} - \alpha) < \frac{\frac{1}{2} \left[BR(B^{0} \to \pi^{0}\pi^{0}) + BR(\overline{B}^{0} \to \pi^{0}\pi^{0}) \right]}{BR(B^{\pm} \to \pi^{\pm}\pi^{0})}$$

$$< 0.61@90\% \text{ C.L.} \quad \text{Correlations and systematic errors included}$$

 $|\alpha_{\rm eff} - \alpha| < 51^{\circ}$ @ 90% C.L.

Many other bounds on the market

□ Charles, Gronau/London/Sinha/Sinha, etc...

CP-Violating Asymmetries in $B^0 \rightarrow \rho^+ \pi^-, \rho^+ K^-$

R. Aleksan et al., Nucl. Phys. B361, 141 (1991)

Opportunity and challenges

- In principle, can measure α directly, even with penguins
- Much more difficult than $\pi^+\pi^-$
 - Three-body topology with neutral pion (combinatorics, lower efficiency)
 - Significant fraction of misreconstructed signal events and backgrounds from other B decays
 - Need much larger sample than currently available to extract α cleanly
- We perform a "quasi-two-body" analysis:
 - Select the ρ -dominated region of the $\pi^+\pi^-\pi^0/K^+\pi^-\pi^0$ Dalitz plane
 - Use multivariate techniques to suppress $q\overline{q}$ backgrounds
 - Simultaneous fit for $\rho^+\pi^-$ and ρ^+K^-

Not a CP eigenstate, (at least) four amplitudes contribute:

Time-integrated asymmetry: $A_{CP}^{\rho h} = \frac{N(\rho^{+}h^{-}) - N(\rho^{-}h^{+})}{N(\rho^{+}h^{-}) + N(\rho^{-}h^{+})}$ Time evolution includes:

 $(S_{\rho h} + Q\Delta S_{\rho h})\sin(\Delta m_{d}\Delta t)$ $(C_{\rho h} + Q\Delta C_{\rho h})\cos(\Delta m_{d}\Delta t)$ Q is the ρ charge

direct CP violation $\rightarrow A_{CP}$ and C $\neq 0$ indirect CP violation $\rightarrow S \neq 0$

 ΔC and ΔS are insensitive to CP violation

 ρ K is self-tagging:

$$C_{\rho K} = 0, \Delta C_{\rho K} = -1, S_{\rho K} = 0, \Delta S_{\rho K} = 0$$

Fit for:

 $A_{CP}^{\rho\pi}, A_{CP}^{\rho K}, C_{\rho\pi}, \Delta C_{\rho\pi}, S_{\rho\pi}, \Delta S_{\rho\pi}$

Analysis

- Multi-dimensional ML fit
 - \square m_{ES}, Δ E, Neural Net (NN), θ_c , Δt
- Components
 - **\Box** Signal ρπ and ρK
 - Misreconstructed signal events
 - Mostly due to wrong photon(s)
 - B backgrounds
 - from $b \rightarrow c$ and charmless B decays
 - Same lifetime as signal
 - $e^+e^- \rightarrow q\bar{q}$
- Fix B background yields, fit for signal yields and CP asymmetries

Validation:

 $\tau = (1.59 \pm 0.12) \text{ps}$

$$\Delta m_d = (0.51 \pm 0.09) \mathrm{ps}^{-1}$$

Yields and Charge Asymmetries

$$N_{\rho\pi} = 413^{+34}_{-33}$$
$$N_{\rho K} = 147^{+22}_{-21}$$

hep-ex/0207068

 $A_{CP}^{\rho\pi} = -0.22_{-0.08}^{+0.08} (stat) \pm 0.07 (syst)$ $A_{CP}^{\rho K} = 0.19_{-0.14}^{+0.14} (stat) \pm 0.11 (syst)$ Preliminary

$B^0 \rightarrow \rho \pi$ time-dependent asymmetry

Summary

- Hyperactive effort within BaBar to constrain, measure, and otherwise determine α
- Charmless two-body decays:
 - No evidence for large direct or indirect CP violation in $\pi\pi$
 - Beginning to piece together the necessary inputs to the isospin analysis
 - Measurements of decay rates for $\pi\pi^0$ and $\pi^0\pi^0$ (upper limit)
 - Too early for a significant constraint
- Charmless three-body decays
 - First measurement of CP asymmetries in $\rho\pi$ and ρK

The next few years will be interesting indeed!