Measurements of direct *CP* **violation**

in two-body decays of \boldsymbol{B} meson with Belle

SUZUKI, Kazuhito

KEK-IPNS

July 26 2002

31st International Conference on High Energy Physics @Amsterdam RAI International Congress Centre

1 Direct *CP* Violation in *B* Meson System

- Mixing-induced "indirect" CP violation (ICPV) has already been observed.
- $\sin 2\phi_1 = 0.82 \pm 0.12 \pm 0.05$ (Belle @42 fb⁻¹)
- The Kobayashi-Maskawa (KM) scheme is highly supported.

$$\stackrel{B^{0}}{\stackrel{\uparrow}{\longrightarrow}} f_{CP} \qquad \mathcal{A}_{CP}(t) = \frac{\Gamma(\overline{B}^{0}(t) \to \overline{f}) - \Gamma(B^{0}(t) \to f)}{\Gamma(\overline{B}^{0}(t) \to \overline{f}) + \Gamma(B^{0}(t) \to f)}$$

- Decay rate asymmetry "direct *CP* violation (DCPV)" has not been observed yet in *B* meson system.
- More than two amplitudes for a single decay,
- Different weak phases ($\Delta \phi \neq 0$),
- Different strong phases ($\Delta \delta \neq 0$).

$$|A_1 + A_2|^2 \neq |A_1^* + A_2^*|^2 \quad \mathcal{A}_{CP} = \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)}$$

- Search for the DCPV is an important issue in *B*-factory experiments.
- ϕ_3 through $b \to u$ tree.
- New physics through a loop diagram.
- DCPV could be an important hint for the present baryonic universe.

2 Search for DCPV at Belle

In this talk, DCPV search using time-integrated analysis will be shown for the following decays.

- Charmless hadronic decays
- $B \rightarrow K\pi$, $\pi\pi$ @29.1 fb⁻¹, 78 fb⁻¹ (Preliminary)
- $B^+ \rightarrow \eta' K^+$ @41.8 fb⁻¹
- $B \rightarrow \eta K^*$ @29.4 fb⁻¹
- $B^+ \rightarrow \omega K^+$ @29.4 fb⁻¹
- Charmed hadronic decay
- $B^+ \rightarrow D^0 K^+$ @29.1 fb⁻¹
- Radiative decay
- $B \rightarrow K^* \gamma$ @60 fb⁻¹ (Preliminary)

Analysis

$\circ B$ Kinematic Reconstruction

- Beam energy constrained mass: $m_{\rm bc} \equiv \sqrt{E_{\rm beam}^{*}^2 p_B^{*2}}$
- Energy difference: $\Delta E \equiv E_B^* E_{\text{beam}}^*$

 $\circ e^+e^- \rightarrow q\overline{q} \ (q = u, d, s, c)$ continuum background suppression

- Event topology
- modified Fox-Wolfram moments
- Fisher discriminant
- Angular distribution
- B flight direction
- combined into a single likelihood ratio

$$R_{\mathcal{L}} = \frac{\mathcal{L}_s}{\mathcal{L}_s + \mathcal{L}_q \overline{q}}$$

"spherical"
$$B\overline{B}$$
 events "jet-like" $q\overline{q}$ events

- High Momentum Particle Identification
 - $2.4 < p_h^* < 2.85 \text{ GeV}/c \ (h = \pi, K)$
 - dE/dx (CDC), $N_{p.e.}$ (ACC)
 - combined into a single likelihood ratio

 $P_K = \frac{\mathcal{L}_K}{\mathcal{L}_K + \mathcal{L}_T}$

July 26 2002 (page 5)

Measurements of direct CP violation in two-body decays of B meson with Belle July 26 2002 (page 6)

July 26 2002 (page 8)

July 26 2002 (page 9)

Comparison with Other Measurements and Theories

- Consistent results with improved precision.
- CLEO (9.7 M $B\overline{B}$): Phys. Rev. Lett. 85 (2000)
- BABAR (60 M $B\overline{B}$): Moriond and FPCP Conf. (2002)
- Belle $(32/85 \text{ M}B\overline{B})$: Moriond and FPCP Conf. (2002)

July 26 2002 (page 10)

2.2 **Other Charmless Hadronic Decays** $\circ B \to \eta' K^+$ @41.8 fb⁻¹, ηK^* @29.4 fb⁻¹ • Unexpectedly large \mathcal{B} could be caused by new physics contribution. — $b \rightarrow s$ penguin dominance \rightarrow small \mathcal{A}_{CP} . — new physics contribution \rightarrow large \mathcal{A}_{CP} . • $\eta' \rightarrow \eta \pi^+ \pi^-$, $\rho^0 \gamma / \eta \rightarrow \gamma \gamma$, $\pi^+ \pi^- \pi^0$ Events / 2.5 MeV /c² • $K^{*0} \rightarrow K^- \pi^+ / K^{*+} \rightarrow K^+ \pi^0$, $\overline{K}{}^0 \pi^+$ Unbinned 2D-ML fit $\circ B^+ \to \omega K^+$ @29.4 fb⁻¹ • Belle result shows $\mathcal{B}(\omega K^+) > \mathcal{B}(\omega \pi^+)$. — sizable \mathcal{A}_{CP} can be expected. • $\omega \to \pi^+ \pi^- \pi^0$ Unbinned 2D-ML fit Decay Mode $N(\overline{B})$ N(B) $139.7 \stackrel{+14.3}{_{-13.5}}$ $144.0 \begin{array}{c} +14.6 \\ -13.8 \end{array}$ $B^+ \to \eta' K^+$

 $11.6 \stackrel{+5.4}{_{-4.3}}$

 $11.0 -4.3 \\ 12.5 +6.1 \\ -4.2$

 7.3 ± 3.5

[-0.70, 0.28]

 $B^0 \to \eta K^{*0}$

 $\begin{array}{c} B^+ \to \eta K^{*+} \\ B^+ \to \omega K^+ \end{array}$

 $-0.21 \pm 0.28 \pm 0.03$

 $14.6 \begin{array}{c} +6.0 \\ -4.8 \\ 13.1 \begin{array}{c} +6.1 \\ -4.6 \end{array}$

 11.2 ± 3.7

July 26 2002 (page 12)

— Helicity angle cut for non- D_{CP} bg. in $D \rightarrow VP$

— $m_{K^*(\to K^0_S\pi)}$ cut for $D^0 \to K^{*-}\rho^+$ bg. in $D \to K^0_S\omega$

• High momentum PID for $D^0K^- / D^0\pi^-$ separation.

Decay Mode	$N(\overline{B})$	N(B)	\mathcal{A}_{CP}	90% C.L.
$B^+ \to D_f K^+$	81.1 ± 10.4	80.6 ± 10.1	$0.003 \pm 0.089 \pm 0.037$	[-0.15, 0.16]
$B^+ \to D_1 K^+$	14.7 ± 4.6	8.1 ± 3.9	$0.29 \pm 0.26 \pm 0.05$	[-0.14, 0.73]
$B^+ \to D_2 K^+$	10.6 ± 4.2	16.4 ± 5.5	$-0.22 \pm 0.24 \pm 0.04$	[-0.62, 0.18]

3 Summary

- Belle DCPV results show null consistent asymmetries in decay rates.
- Using time-integrated analysis.
- Based on $29 78 \text{ fb}^{-1}$.
- Previously observed large asymmetry in $B^+ \rightarrow K_{\rm S}^0 \pi^+$ has disappeared.
- Statistical precisions have reached below 10% level in several decays.
- Much more interesting informations can be expected in a few years.

 ϕ_3 , strong phase, new physics . . .

