Title/Outline

Precision predictions for W-pair production at LEP2

WIESLAW PLACZEK Jagiellonian University, Cracow, Poland & CERN, Theory Division

Outline:

- Indroduction.
- Theoretical description of W-pair production.
- Monte Carlo program RacoonWW.
- Monte Carlo programs KoralW & YFSWW3.
- Theoretical precision of the main LEP2 WW-observables.
- Conclusions.

W. Placzek

Why to investigate W-pair production?

• To measure the Standard Model (SM) parameters, e.g. M_W , Γ_W \rightarrow Before LEP2 (1995): $\Delta M_W \approx 160$ MeV,

while: $\Delta M_Z \approx 2\,{\rm MeV}$

- To test the SM, in particular its non-Abelian nature through triple-gauge-boson couplings (TGCs): $WW\gamma$ and WWZ<u>Note:</u> For the first time at the tree level in e^+e^- collisions
- To get better constraints on the **Higgs mass**
 - \rightarrow Indirectly from SM fits
- To search for "new physics", e.g. anomalous TGCs, etc.
- WW process important background for **Higgs boson** searches (e.g. in "LEP2 Higgs events" @ $m_H \approx 115$ GeV)

Indroduction

Main WW observables at LEP2 and their precision:

- Total WW cross section σ_{WW}
 - \rightarrow Experimental precision:
 - \rightarrow Required theoretical precision:
- Distribution of W invariant mass $M_{inv} \Rightarrow M_W$ measurement
 - \rightarrow Experimental precision:
 - \rightarrow Required theoretical precision:
- Distribution of cosine of W polar angle $\cos \theta_W \Rightarrow$ TGCs measurement, e.g. for C and P conserving anomalous TGC $\lambda = \lambda_{\gamma} = \lambda_Z$:
 - \rightarrow Experimental precision:
 - \rightarrow Required theoretical precision:

LEP2 data analyses require theoretical predictions in terms of Monte Carlo Event Generator (MCEG) that meet the above precision requirements!

 $\delta_{ex} M_W \sim 30 \, {\rm MeV} \\ \delta_{th} M_W \lesssim 15 \, {\rm MeV}$

 $\delta_{ex}\lambda \sim 0.01$

 $\delta_{th}\lambda \lesssim 0.005$

 $\delta_{ex}\sigma_{WW} \sim 1\%$

 $\delta_{th}\sigma_{WW} \lesssim 0.5\%$

Theoretical description of $W\mbox{-}{\rm pair}$ production

\bullet Another problem: Inclusion of finite $W\text{-}\mathsf{boson}$ width!

- \rightarrow "Fixed-Width Scheme" and "Running-Width Scheme" violate Gauge Invariance!
- → "Complex-Mass Scheme" Gauge-Invariant, but space-like propagators acquire unphysical width (also CP structure of a process may be changed)
- \rightarrow "Fermion-Loop Scheme" includes fermionic loops, misses bosonic loops, etc.

Beyond tree level the above problems increase dramatically!

- At 1-loop level:
- \rightarrow Thousands of Feynman diagrams per 4f channel!
- \rightarrow Inclusion of finite W width much more difficult!

Do we need to go beyond the Born level?

- Various radiative corrections and their sizes:
- Pure QED
- ▷ Initial-State Radiation (ISR): $\frac{\delta \sigma_{WW}}{\sigma_{WW}} \sim 5-20\%$, $\delta M_W \sim 10$ MeV, $\delta \lambda \sim 0.07$
- \triangleright Coulomb correction: $\frac{\delta \sigma_{WW}}{\sigma_{WW}} \sim 2-6\%$
- \triangleright Final-State Radiadion (FSR): $\delta M_W \sim 10-80$ MeV (acceptance-dependent!)
- \triangleright Non-Factorizable (NF) corrections: $\delta M_W \sim 1-5$ MeV (inclusively)

• Electroweak (EW) ▷ Leading EW corrections (effective scale of hard process): " G_{μ} -scheme" ($lpha ightarrow G_{\mu}$) accounts for $rac{\delta\sigma_{WW}}{\sigma_{WW}} \sim 15\%$ $\triangleright \mathcal{O}(\alpha)$ Non-Leading (NL) EW corrections: From calculations for WW On-Shell process: $\frac{\delta\sigma_{WW}}{\sigma_{WW}} \sim 1-2\%$ \rightarrow also affect TGCs measurement, e.g. $\delta\lambda \sim 0.01$ –0.02 QCD (for hadronic final states) \triangleright "Naive QCD" correction (inclusive): Normalisation factor $\frac{\alpha_s}{\pi} \simeq 3.8\%$ for each final-state quark-pair and $\frac{2\alpha_s}{3\pi}$ for Γ_W ▷ Exclusive QCD effects – managed by dedicated MC packages (PYTHIA, etc.) \Rightarrow All the above effects necessary in MC generator for LEP2! $\mathcal{O}(\alpha)$ NL EW corrections \rightarrow The most difficult: Not available yet even for CC11 If existed – probably too slow numerically for MC generation

Efficient approximation necessary!

We are interested in doubly-resonant WW process: \Rightarrow Another expansion parameter: $\frac{\Gamma_W}{M_W} \sim \frac{1}{40}$ (2.5%) \rightarrow Pole-Epansion: expansion about W-pole in increasing powers of $\frac{\Gamma_W}{M_{W}}$ \Leftrightarrow expansion in decreasing powers of resonance ▷ Leading-Pole Approximation (LPA): only highest-pole (resonant) contributions retained, i.e. $\sim \left(\frac{\Gamma_W}{M_W}\right)^0 \leftarrow |$ **Gauge-Invariant!** (R.G. Stuart, NP**B498** (1997) 28) • For WW process – only double-pole contributions retained \rightarrow Double-Pole Approximation (DPA) • Not sufficient for Born ($\delta \sim \frac{\Gamma_W}{M_W}$) and Leading corrections ($\delta \sim \frac{\Gamma_W}{M_W} \frac{\alpha}{\pi} \log \frac{Q^2}{m^2}$) \rightarrow Lower-pole terms needed – in fact, the full $e^+e^- \rightarrow 4f$ should be considered \circ OK for $\mathcal{O}(\alpha)$ NL EW corrections: $\delta \sim \frac{\Gamma_W}{M_{w}} \frac{\alpha}{\pi} < 10^{-4}$ ► Such solutions implemented in two MCEGs for WW process: • RacoonWW: A. Denner, S. Dittmaier, M. Roth, D. Wackeroth \rightarrow Nucl. Phys. **B587** (2000) 67, and refs. therein. • KoralW & YFSWW3: S. Jadach, W. Placzek, M. Skrzypek, B.F.L. Ward, Z. Was \rightarrow Comput. Phys. Commun. **140** (2001) 432 and 475, and refs. therein.

RacoonWW

(A. Denner, S. Dittmaier, M. Roth, D. Wackeroth)

- Matrix element for all $e^+e^- \rightarrow 4f$ processes in massless-fermion approximation
- Matrix element for all $e^+e^- \rightarrow 4f\gamma$ processes in massless-fermion approxim.
- \bullet ISR up to $\mathcal{O}(\alpha^2)$ LL with soft-photon exponentiation through QED structure functions
- \bullet Coulomb correction for off-shell $W{\rm s}$
- Non-factorizable QED virtual corrections in DPA
- Virtual $\mathcal{O}(\alpha)$ NL EW corrections in DPA (used 1-loop calculations of on-shell WW production and decay)
- Two methods of treating soft and collinear photon singulatities: dipole subtraction and phase-space slicing → proper matching between virtual and real corrections
- Anomalous Triple and Quartic gauge-boson couplings
- Multi-channel MC algorithm for integration and event generation

KoralW & YFSWW3

(S. Jadach, W. Placzek, M. Skrzypek, B.F.L. Ward, Z. Was)

KoralW:

• Fully massive matrix element for all $e^+e^- \rightarrow 4f$ processes (GRACE)

• Two independent efficient multi-channel MC algorithms for 4f phase space **YFSWW3**:

- \bullet Multiphoton radiation in WW production stage in the YFS scheme
- $\mathcal{O}(\alpha)$ NL EW corrections in LPA (from on-shell WW production at $\mathcal{O}(\alpha)$:
 - J. Fleischer et al., ZPC42 (1989) 409, K. Kolodziej & M. Zralek, PRD43 (1991) 3619)

Both:

- ISR in YFS exponentiation up to $\mathcal{O}(lpha^3)$ LL with non-zero p_T multi-photons
- ullet Coulomb correction for off-shell Ws
- Non-factorizable corr. in inclusive approx. of "screened-Coulomb" ansatz
- Anomalous TGCs (three parametrisations)
- \bullet FSR by PHOTOS up to $\mathcal{O}(\alpha^2)$ LL
- τ decays by TAUOLA; quark fragmentation and hadronization by JETSET
- \bullet Semi-Analytical program KorWan for WW process including leading corr.

11

σ_{WW} @ LEP2 Energies: YFSWW3 vs. RacoonWW

$\sqrt{s} [GeV]$	$\sigma_{WW} \left[pb \right]$			
	YFSWW3	RacoonWW	$(\mathbf{T} - \mathbf{K})/\mathbf{T} [\%]$	
168.000	9.8342(29)	9.8392(49)	-0.05(6)	
172.086	12.0982(34)	$12.0896\left(76 ight)$	0.08(7)	
176.000	13.6360(45)	13.6271(66)	0.07(6)	
180.000	14.7790(42)	14.7585(72)	0.14(6)	
182.655	15.3584(43)	$15.3684\left(76 ight)$	-0.07(6)	
185.000	15.7691(46)	$15.7716\left(78 ight)$	-0.02(6)	
188.628	16.2578(47)	$16.2486\left(111 ight)$	0.06(8)	
191.583	16.5523(47)	16.5188(85)	0.21(6)	
195.519	16.8282(49)	16.8009(87)	0.16(6)	
199.516	17.0099(49)	16.9791(88)	0.18(6)	
201.624	17.0643(51)	$17.0316\left(89 ight)$	0.19(6)	
205.000	17.1213(53)	17.0792(89)	0.24(6)	
208.000	17.1361(53)	17.0942(90)	0.24(7)	
210.000	17.1229(52)	$17.0858\left(91 ight)$	0.20(7)	
215.000	17.0651(54)	$17.0378\left(91 ight)$	0.16(7)	

Agreement within 0.3%

W. Placzek

LEP EWWG

PRELIMINARY

PRELIMINARY

LEP EWWG

W. Placzek

W. Placzek

Fits of KorWan to W inv. mass distributions from YFSWW3 and RacoonWW

Estimation of the missing effects in KoralW&YFSWW3					
ΔM_W					
Error Type	Scale Param. $\Delta M_W = \Gamma \times \epsilon$	Numerical cross-check	ΔM_W		
WW production					
ISR $\mathcal{O}(\alpha^4 L_e^4)$	$\epsilon \simeq \frac{\Gamma_W M_W}{s \beta_W^2} (\frac{\alpha}{\pi})^4 L_e^4 \sim 5 \cdot 10^{-6}$	$[\mathcal{O}(\alpha^3 L_e^3) - \mathcal{O}(\alpha^2 L_e^2)]_{\text{KoralW}}$	$\ll 1 \text{ MeV}$		
ISR $\mathcal{O}(\alpha^2 L_e)$	$\epsilon \simeq \frac{\Gamma_W \dot{M}_W}{s \beta_W^2} (\frac{\alpha}{\pi})^2 L_e \sim 5 \cdot 10^{-6}$	KorWan	$\ll 1 { m MeV}$		
ISR $\mathcal{O}(\alpha^2)_{pairs}$	$\epsilon \simeq \frac{\Gamma_W M_W}{s \beta_W^2} (\frac{\alpha}{\pi})^2 L_e^2 \sim 4 \cdot 10^{-4}$	KorWan	$< 1 { m MeV}$		
W decay					
FSR $\mathcal{O}(\alpha)_{miss.}$	$\epsilon \simeq 0.2 \left(\frac{\pi}{8} \frac{\alpha}{\pi} 2 \ln \frac{M_W}{p_T} \right) \sim 10^{-3}$	Basic tests of PHOTOS	$\sim 2 \mathrm{MeV}$		
FSR $\mathcal{O}(\alpha^2)_{miss.}$	$\epsilon \simeq \frac{1}{2} \left(\frac{\pi}{8} \frac{\alpha}{\pi} 2 \ln \frac{M_W}{p_T} \right)^2 \sim 10^{-5}$	On/off 2γ in PHOTOS	$\ll 1 \text{ MeV}$		
Non-factorizable QED interferences (between production and 2 decays)					
$\mathcal{O}(\alpha^1)_{miss.}$	$\epsilon \simeq 0.1 \left(\frac{\alpha}{4} \frac{(1-\beta)^2}{\beta}\right) \sim 10^{-4}$	Chapovsky & Khoze	< 2 MeV		
$\mathcal{O}(lpha^2)$	$\epsilon \simeq \frac{1}{2} \left(\frac{\alpha^2}{4} \frac{(1-\beta)^2}{\beta} \right)^2 \sim 10^{-7}$	None	$\ll 1 \text{ MeV}$		
$\delta_{th}M_W\simeq 5{ m MeV}$					

W. Placzek

W. Placzek

TH precision of an. TGC λ (R. Bruneliere et al., Phys. Lett. B533 (2002) 75)

MC parametric fits to $\cos \theta_W$ distributions from YFSWW3 and RacoonWW

ALEPH fitting function		Fitted data			
Channel	Acceptance	Y: Best–ISR	R: Best-ISR	Best: R-Y	Acceptance
	TRUE	0.0118(7)	0.0102(9)	0.0008(10)	CALO5
$\mu \nu_{\mu} q q$		0.0121(7)	0.0170(9)	0.0009(10)	CALO25
	RECO	0.0118(7)	0.0103(9)	0.0008(10)	CALO5
		0.0122(7)	0.0172(9)	0.0009(10)	CALO25
	TRUE	0.0119(7)	0.0103(9)	0.0008(10)	CALO5
$e\nu_{e}aa$		0.0122(7)	0.0172(9)	0.0009(10)	CALO25
	PECO	0.0119(7)	0.0103(9)	0.0008(10)	CALO5
	RECO	0.0123(7)	0.0172(9)	0.0009(10)	CALO25
	TRUE	0.0115(7)	0.0100(8)	0.0008(10)	CALO5
$ au u_{ au} q q$		0.0118(7)	0.0166(8)	0.0009(10)	CALO25
	RECO	0.0107(6)	0.0091(8)	0.0007(9)	CALO5
		0.0109(6)	0.0152(8)	0.0008(9)	CALO25
	TRUE	0.0118(7)	0.0102(9)	0.0008(10)	CALO5
qqqq		0.0120(7)	0.0169(9)	0.0009(10)	CALO25
	RECO	0.0094(6)	0.0081(7)	0.0007(8)	CALO5
		0.0096(6)	0.0132(7)	0.0008(8)	CALO25
TRUE – parton level, RECO – detector reconstruction; Y=YFSWW3, R=RacoonV				=RacoonWW)	

Best – ISR = O(lpha) NL EW correction ~ 0.01 –0.02 !

Shifts of λ from various effects

YFSWW3

RacoonWW

Effect	Acceptance	$\Delta\lambda$	Effect	Acceptance	$\Delta\lambda$
1. Best – ISR	$BARE_{4\pi}$	0.0108(7)		CALO5	0.0096(8)
	$CALO5_{4\pi}$	0.0110(7)	1. Best – ISR	CALO25	0.0158(8)
2. ISR $_3 - ISR_2$	$BARE_{4\pi}$	0.0001(2)			0.001(10)
	$CALO5_{4\pi}$	0.0001(2)	2. Off-shell Coulomb effect		0.0001(10)
3. FSR $_2$ – FSR $_1$	$BARE_{4\pi}$	0.0001(3)		CALO25	0.0001(10)
	$CALO5_{4\pi}$	0.0001(3)	$2 \int f$ background corr (Porp)	CALO5	0.0029(10)
$\int \int f$ background corr (Porn)	CALO5	0.0021(3)	[] 5.4	CALO25	0.0029(10)
	CALO25	0.0021 (3)		CALO5	0.0008(10)
5 $4f$ -background corr (with ISR)	CALO5	0.0005(3)	4. 4 <i>j</i> -background corr. (with ISR)	CALO25	0.0008(10)
	CALO25	0.0005(3)		CALO5	0.0003(10)
6. EWC-scheme: $(B) - (A)$	CALO5	0.0006(9)	5. On-shell projection		0.0003(10)
	CALO25	0.0006(9)		UALU23	0.0003(10)
7. LPA $_b$ – LPA $_a$	CALO5	0.0017(9)	6 DPA definition	CALO5	0.0005(10)
	CALO25	0.0018(9)		CALO25	0.0005(10)

$\delta_{th}\lambda\simeq 0.005$

 Two independent Monte Carlo programs for precision predictions of W-pair production at LEP2:

• RacoonWW: A. Denner, S. Dittmaier, M. Roth, D. Wackeroth

- KoralW&YFSWW3: S. Jadach, W. Placzek, M. Skrzypek, B.F.L. Ward, Z. Was
- They include 4f-background contributions as well as all necessary radiative corrections at the precision level required by LEP2.
- The agreement between these programs for the main observables is within the required accuracy of LEP2 experiments.
- Comparisons of these programs, comparisons with other calculations and investigations of various effects \Rightarrow the theoretical precision (δ_{th}) for the main LEP2 observables:

$$\triangleright \quad \delta_{th} \, \sigma_{WW} \sim 0.5\%$$

$$\triangleright ~ \delta_{th} \, M_W \sim 5 \, {\rm MeV}$$

 $\triangleright \ \delta_{th} \ \lambda \sim 0.005$ (anomalous TGC)

$$\begin{split} &\delta_{ex}\,\sigma_{WW}\sim 1\%\\ &\delta_{ex}\,M_W\sim 30\,{\rm MeV}\\ &\delta_{ex}\,\lambda\sim 0.01 \end{split}$$

 \rightarrow To satisfy high-precision requirements of future LC – still long way to go!