

The Standard Model Higgs

The experimental data test the Standard Model at the **per mille** level

Yet the Higgs boson has not been discovered

The existence of the Higgs boson is well supported by the data on radiative corrections

But what is the value of its mass?

The Theory The Precision Measurements **THE DIRECT SEARCH**

LEP: the ideal place

ICHEP02 Amsterdam

Chiara MARIOTTI, CERN

LEP: the ideal place (2)

Indirect Searches:

Information from LEP precision measurements: $m(H) = 81 + 53 - 30 \text{ GeV/c}^2$

 $m(H) < 193 \text{ GeV/c}^2 \text{ at } 95\% \text{CL}$

But... a very small cross section

The challenge of the search: the control of the tails

... and the b-tagging

from the power of the micro-vertex to the software techniques all we have learned in 10 years is used in the Higgs search:

... and the b-tagging

from the power of the micro-vertex to the software techniques all we have learned in 10 years is used in the Higgs search:

The search of the SM Higgs \Rightarrow a "precision measurement"

The 4 jets channel: pairing & mass reconstruction

six possible pairings:

H dijet	(1,2) M=97 B=5.7	(1,3)	(1,4)	(2,3) M=113 B=3.4	(2,4)	(3,4)
Z dijet	(3,4) M=M _Z B=-0.5	(2,4)	(2,3)	(1,4) M=M _Z B=2.0	(1,3)	(1,2)

•For each pairing, make a 5C fit with M_{ij} =M_Z
& build a likelihood including the probability that the two other jets are btagged coming from the Higgs decay.

•A unique mass value is selected from the most likely combination

The lepton channel

Hnn: an irreducible background, ee->bb

Hnn: an irreducible background, ee->bb

The signal is not collinear !

ICHEP02 Amsterdam

Chiara MARIOTTI, CERN

for a collinearity $< 5^{\circ}$

The new results

All 4 experiments implemented various modifications in order to improve the sensitivity and/or better control the background

- Full data processing: final detector calibration, alignment, b-tagging...
- New MC generators (DELPHI), more MC statistics (all)
- Precise knowledge of the LEP cm energy (all)
- Upgrades for some analyses:
 - New analyses with better sensitivity (OPAL):

new jet pairing (4- jet), and L -> NN(miss.ener)

- Better rejection of beam-related background (ALEPH)
- Extension of analyses down to bb threshold (DELPHI)
- L3: final result already last year :

Few candidate events compatible with the Higgs hypothesis

ALEPH: Excess of events compared to what is expected from SM background, suggesting a Higgs boson with mass m_H~114 GeV/c²

DELPHI: No evidence for any Higgs signal, limit set to m_H> 114.1 GeV/c²

OPAL: No evidence for any Higgs signal, limit set to $m_H > 112.7 \text{ GeV/c}^2$

The statistical procedure

LEP HIGGS WG The data from all channels (Hqq, Hnn, Hll, qqtt) at all E_{cm} are combined in a 2-Dimensional space: - reconstructed Higgs mass M_{H}^{rec} - discriminant variable **G** (b-tag, kinematical info..) (O) 10 In each bin of M_{H}^{rec} and G: - Background (MC) b, 7.5 ''b' - Signal (MC) S_i 5 - Num. of candidates N. Observed 2.5 For each "test mass" m(H) 0 -2.5 LIKELIHOOD TEST : Nov 2000 "sig+bkgr " **Û** 'bkgr" -5 -7.5 ''s+b' $\ln Q(m(H)) = -S_{tot} + \dot{a} N_i \ln[1+s_i(m(H)) / b_i]$ -10 110 115 105 **W**_i of the event M_µ (GeV) Q(m(H)) = L(s+b) / L(b)"test statistic"

The results of each experiment

The results per channel

The combined LEP result

Compatibility with the background

The first 4 events maintain the highest weight in the final analyses

Chiara MARIOTTI, CERN

0.5

0

0.5

1.5

1

 $log_{in}(S/B)$

ICHEP02 Amsterdam

10

2

-1.5

-1

The combined limit

One of the 3 Aleph events

A 22 GeV shower in SICAL that was giving Evis = 252 GeV is rejected by a better algorithm : $m_H = 112.8 - m_H = 114.4$

most significant Hvv candidate

The L3 event

measured II mass=114.4 GeV II mass resolution ~3 GeV

Secondary vtx's view

Higgs discovery? from end of 2000 to the final results...

Higgs discovery? from end of 2000 to the final results...

Standard Model Higgs as of today 400 **Theoretical Bounds** $V(\phi) = -\mu |\phi|^2 + \lambda |f|^4$ m(H)£ 193 GeV/c² 300 at 95% CL mH, mH (GeV) 6 triviality **EW** precision theory uncertainty 200 $\Delta \alpha_{had}^{(5)} =$ 0.02761±0.00036 <mark>2747±0.</mark>00012 Without NuTeV 4 EW vacuum is absolute minimum $\Delta\chi^2$ 0 103 106 109 1012 1015 2 L(GeV) - Scale of new Physics **Direct Search** m(H) ³ 114.3 GeV/c² Excluded Preliminary **EW** precision 0 at 95% CL 100 400 20 measurements m_H [GeV] m(H)=81 $^{+52}_{-3}$ GeV/c²

backup

The combined mass plot

ICHEP02 Amsterdam

Chiara MARIOTTI, CERN

backup

The HZZ coupling

The 95%CL upper-bound on (gHZZ/gHZZ(SM))²:

i.e. the HZZ coupling relative to the SM coupling

From 10 to 85 GeV the \mathbf{s}_{obs} is ~20 times smaller than the SM.