

 $\mathsf{D} \xrightarrow[e^{-}]{e^{+}} \xrightarrow{e^{+}}$

Richard Hawkings (CERN/OPAL)

ICHEP02 (Amsterdam), session 4

Heavy flavour electroweak measurements at the Z⁰:

- Motivation and background
- What's new details of the latest measurements
 - b and c quark asymmetries, (partial widths)
- Heavy flavour electroweak fit results
- Interpretation and conclusions
- Thanks to LEP heavy flavour electroweak group.
 - See <u>http://lepewwg.web.cern.ch/LEPEWWG</u> for numbers, plots...

Measurement Z⁰ partial decay width:

- $R_{b} \cong \Gamma(bb) / \Gamma(had)$
- Vertex corrections involving top
 - New physics coupling to mass ?

- Measurement of asymmetries:
 - At LEP $A_{FB}^{0,q} = \frac{3}{4}A_e A_a$

- $A_f = 2q_V q_A / (q_V^2 + q_A^2)$
- Effective couplings $g_V/g_A \Rightarrow \sin^2\theta_{eff}$
- LEP: A_{FB}^{b} mainly sensitive to A_{e}
 - Due to isospin structure for e,b.
- SLD: e⁻ beam polarisation (~73%) allows direct measurement of $A_{\rm b}$

- New since Winter 02:
 - R_b/R_c nothing... everything is finished.
 - New OPAL A_{FB}^b result using jet/vertex/kaon charge:
 - Improved b-tagging (from R_b measurement)
 - New charge tagging (from B oscillations/CP-violation analyses)
 - Extend $|\cos\theta|$ acceptance from 0.8 to 0.95.
 - Add 0.5M Z⁰ from LEP2 calibration data...
 - Uncertainty now 57% of old OPAL jet/vertex charge analysis.
 - Final: CERN-EP-2002-053, submitted to Phys. Lett. B.
 - Updated DELPHI A_{FB}^{b} and A_{FB}^{c} analysis with leptons
 - Update of existing preliminary result
 - Basically same analysis, updated systematics
 - Almost finalised for publication

 Main systematic issues: control of background from other flavours and understanding hemisphere correlations from e.g. 3 -jet events

- b-tagging based on vertex detectors:
 - Impact parameters, secondary vertex reconstruction, vertex mass
 - Combine likelihood or neural network
 - Purities 95-99%, efficiency 25-50%
- b/c tagging based on leptons (e or μ)
 - Less efficient than vertex tagging
 - Limited by BR(b \rightarrow I) and (c \rightarrow I) ~20%
 - Also tags quark charge (for asym.)
- c-tagging based on D^(*) mesons
 - Small samples, enhanced with inclusive slow pion techniques

Asymmetry analyses - separating b and b-bar

 e^{-} e^{+} e^{+}

- Vertex b-tags \Rightarrow no quark charge
 - Jet charge variables:
 - Momentum-weighted track charge
 - Multiple weights (p^k, k=0 to 1)
 - Secondary vertex charge
 - Good for B^{\pm} , no info for B^0
 - Only useful for long-lived b's
 - Kaon charges ($b \rightarrow c \rightarrow s \rightarrow K^-$)
 - Kaon ID with CRID, RICH, dE/dx
 - Again, combine to multivariate tag variable, mistag 25-30%.
 - Self calibration compare tags in two hemispheres of event.

- Control of systematics...
 - b-efficiencies from data:
 - Compare sngl/dbl tag rates
 - Extend to multiple tag types, also measure c-efficiencies
 - For asymmetries, measure b and sometimes c mis-tags from data
 - Complex multi-dimensional fits
 - Allow all information to be used pure/less pure well/badly tagged samples.
 - Some residual charm (mainly for R_b) and uds background systematics
 - Multitag assumes hemispheres are independent - not quite true

- Hemisphere correlations from:
 - Detector performance vs $\cos\theta$
 - Gluon radiation, fragmentation
- Very important for R_b, many studies – dominant corl. systematic
- Also important for asymmetries:
 - Tag performance worse in 3-jet events with low b momenta.
 - Charge conservation between hemispheres

Gluon radiation also modifies measured asymmetries directly:

- Effects up to parton level are calculable in QCD (α_s^2) ~4%.
 - Monte Carlo ⇒detector level
- Corrections affect analyses in different ways...
 - Some self-calibration of events of type (c) - reduces effect of gluon radiation.

Lepton analyses - flavour separation

- Lepton momenta (p,p_t) plus
 - Kinematic info (jet shape)
 - Vertex b-tags (both hemispheres)
 - Opposite hemisphere jet charge
- More variables bring separation
 - But more complexity, correlations with jet-charge analyses...
- Typically combined in neural network or likelihood
 - Several outputs for event classes
 - Fit multidimensional distribution
 - DELPHI: R_b-type fit to get purities

e⁻⁻

- Fit to extract A_{FB}^{b} and A_{FB}^{c} :
 - Lepton-charge-signed cos
 distⁿ
 or differential asym. vs cos
 dist
 - Two sources of wrong sign leptons:
 - $b \rightarrow c \rightarrow l^+$ decays and B^0 mixing
 - 'Traditional' analyses fit average bmixing parameter χ at same time from events with two leptons.
 - Corrections are needed for sample biases (e.g. use of b-vertices)
 - DELPHI uses opposite hemisphere jet charge to control B-mixing contribution.

... not just using lepton info !

- Measurements of R_b, R_c and asymmetries are correlated.
 - Dependence on each other, common systematic uncertainties and external inputs (LEP and elsewhere)
 - Simultaneous fit to electroweak observables plus
 - Charm hadron production fractions (D⁰, D⁺, D_s, baryons)
 - Leptonic branching ratios b→l, b→c→l, c→l and mixing χ
 - LEP asymmetries A_{FB}^{b,c} and SLD A^{b,c} fitted separately
 Also fit LEP off-peak energy points separately, then combine.
 - Final fit χ^2 is 48/(105-14) rather low...
 - Mainly from systematics in many cases conservative (stat limited)

Results for R_b and R_c

 R_b in good agreement with direct top mass measurement

100

0.2125 0.215 0.2175 0.22

 $\Gamma_{\rm b}/\Gamma_{\rm had}$ for $\Gamma_{\rm c}/\Gamma_{\rm had} = 0.172$

Asymmetries vs energy

- Changing Z/γ contributions and interference between them
 - Data in good agreement with Standard Model expectation
 - Now combine all energy points, and correct to 'pole asymmetry'.

b asymmetry at Z-pole

- Contributions from
 - Leptonic analyses (also A_{fb}^c)
 - Inclusive (jet charge++)
- Good agreement between them
- Most precise results from ALEPH, OPAL, DELPHI inclusive

A_{FB}^{b} =0.0995±0.0015±0.0007

- Statistics dominated, common systematic is only 0.0004 (mainly from QCD effects).
 - Change of +1/6 σ since Winter 02
- A_{FB}^b prefers m_H ~ 400 GeV

c asymmetry at Z-pole

- Contributions from
 - Leptonic analyses (also A_{fb}^b)
 - D* mesons
- Good agreement between them
 - Provides confidence that b/c separation in leptonic events is understood
- A_{FB}^{c} =0.0713±0.0031±0.0018
 - Again statistics dominated, common systematic is only 0.0009.
 - Change of +1/6₅ since Winter 02

• Using this to convert LEP A_{FB}^{b} to A^{b} results in a 'low' A_{b} , still compatible with SLD direct measurement

Standard Model interpretation

- Interpretation as $sin^2\theta_{eff}$:

- First three from leptons, last three from hadrons:
- 0.23113±0.00021 (leptons)
- 0.23217±0.00029 (hadrons)
- 2.9σ discrepancy, driven by A_{LR} vs A_{FB}^b - also 2.9σ
 - Same effect as seen on coupling plots...
- Overall average:
 - $sin^2\theta_{eff}$ =0.23148±0.00017, χ^2 =10.2/5 (7%)

Prefers m_H around 100 GeV.

- LEP/SLD electroweak measurements continue to improve...
 - Reaching the end of the road
 - Squeezing the maximum out of the data a few new analyses.
 - Nearly all results finalised (DELPHI leptons/NN, OPAL leptons, SLD still to be done, but no big improvements expected).
 - Much effort in improving and checking asymmetry analyses over last couple of years - no sign of problems.
 - Electroweak results are 'intriguing / 'unsatisfactory':
 - Statistical fluctuation ($O(3\sigma)$ effect)?
 - Systematic problems ? would have to be BIG on level of estimated systematics.
 - New physics ?
 - Need new accelerators to decide ...