

S. Jézéquel LAPP-Annecy IN2P3/CNRS-Université de Savoie

On behalf of the LEP experiments

<u>Outline</u>

- Characteristics of charged triple gauge-boson coupling (cTGC)
- Analysis
 - Single W channel
 - W^+W^- channel
- LEP combination of cTGC results
 All results are preliminary for all experiments
- Conclusion

Characteristics of cTGC

- cTGC are related to WWγ and WWZ vertices
- Non-Abelian nature of $SU(2)_L \times U(1)_Y$ WW γ and WWZ exist at tree level in the Standard Model
- S.M. loop correction $\sim 10^{-3}$
- Deviation from Standard Model prediction would indicate new physics at larger scale than LEP energy
- Expectation from New Physics like MSSM ~ few 10⁻³

Characteristics of cTGC (2)

□No new LEP combined result on each individual couplings

□ Most constrained analysis

(C and P conservation, $U(1)_{em}$, $SU(2)_{L} \times U(1)_{V}$ 3 free parameters : g_{7}^{1} (=1 in the S.M.) κ_{γ} (=1 in the S.M.) λ_{γ} (=0 in the S.M.) Others are fixed at their S.M. value except : $\kappa_{Z=} g_{Z}^{1} + (\kappa_{\gamma} - 1) . tan^{2} \theta_{W}$ $\lambda_{Z=} \lambda_{\gamma}$ κ_{γ} and λ_{γ} : realeted to electric dipole and quadrupole moments of W 4

26 July 2002

Sensitive channels to cTGC

 $g_{z}^{1}, \kappa_{\gamma} \text{ and } \lambda_{\gamma}$ $\kappa_{\gamma} \text{ and } \lambda_{\gamma}$

•Single γ not used for LEP combination

26 July 2002

cTGC with single W

- Same selection as for the single-W cross section
- Main sensitivity through its cross section
- Kinematic information improves the measurement using :
 - Pt_W , $|\cos \theta_{jet1} \cos \theta_{jet2}|$, NN output for W \rightarrow 2 jets
 - $E_l, \cos \theta_l, Pt_l \text{ for } W \rightarrow l\nu$

W⁺W⁻ reconstruction for cTGC

•Selection : same as W⁺W⁻ cross section restricted to well measured four fermion events

•Kinematics of WW events

•Reconstruction

Start from jets (q), lepton (l) and missing momenta (v)

➤ Tagging particles as fermion or antifermion possible only for lepton (electrical charge)

W^+W^- reconstruction for cTGC(2)

- •Pairing of particles of Ws
 - •WW→lvqq

 $W_1 = jet pair,$

W₂=lepton-neutrino

•WW→qqqq

Highest CC03 Matrix Element of the three possible pairings (~80% efficiency) •Charge of Ws

•WW→lvqq

Tagged by the lepton charge

•WW→qqqq

Estimated from $Q(W_1)-Q(W_2)$ (~80 % efficiency) where

 $Q(W)=\Sigma jet charge$

→ WW→l⁺ ν l^{- ν} : 2 possible solutions for neutrinos (or Ws) assuming 4-momenta conservation and equal masses

Examples of angle distributions

26 July 2002

Extraction of cTGC for W⁺W⁻ events

- Cross-section :
 - Adjust expected cross-section from simulation to the number of observed data
- Angular information
 - Problem : Extract the most precise measurement of one/many couplings out of 5 (or less angles)
 - Solution 1 : Unbinned likelihood method
 - o ALEPH : Computed PDF \otimes detector resolution function
 - o L3, DELPHI : PDF from simulated events
 - Solution 2 : Optimal Observable

✓ Project 5 kinematics variables onto 1 (2) parameter per TGC coupling

 $d\sigma(\Omega,\alpha) = S^{0}(\Omega) + \Sigma\alpha_{i}. S_{i}^{1}(\Omega) + \Sigma\alpha_{i}.\alpha_{j}.S_{ij}^{2}(\Omega) \text{ with } \alpha_{i} = g_{z}^{1}, \kappa_{\gamma} \text{ and } \lambda_{\gamma}$ $\boldsymbol{O}_{i}^{1} = S_{i}^{1}(\Omega)/S^{0}(\Omega) \text{ and } \boldsymbol{O}_{ij}^{2} = S_{ij}^{2}(\Omega)/S^{0}(\Omega)$

o χ^2 fit to O_i^1 and O_{ij}^2 averages (OPAL, ALEPH)

Contribution of channels to cTGC

Systematics

•All main systematics are correlated between energies and experiments

•The main single W systematic is its theoretical cross section uncertainty (+/-5%)

•All other systematics affect W⁺W⁻ channel and are at 1% level except full $O(\alpha)$ correction

•Full $O(\alpha)$ correction on the angular distribution is taken as systematic (conservative assumption)

 \Rightarrow same amplitude as the statistical error

More on $O(\alpha)$ corrections

- Generators applying full O(α) corrections to WW CC03 graphs: RacoonWW and YFSWW
- Common paper have been written for comparison and extraction of systematic on the correction: **Phys.Lett. B533:75-84,2002**
 - The two generators predict similar $O(\alpha)$ correction for angular distribution shifting λ_{γ} by 1.5.10⁻²
 - The uncertainty on the correction was studied for λ_{γ} varying $\cos \theta_{W}$ distributions.
 - ✓ Main contribution comes from different schemes for the EW effective couplings and is estimated to 0.5.10⁻²
 - ✓ Checked with parameterized variations of reconstructed $\cos \theta_W$ distributions within the ALEPH detector
- LEP experiments are now checking results with the full simulation of detectors 26 July 2002 ICHEP2002

Combination of experiments : 1D

Combination of experiments : 3D

*First combination since ICHEP2000

✓ $O(\alpha)$ correction which increases systematics

✓ Improved treatment of correlated systematic errors necessary

Agreement with Standard Model prediction

Combination of experiments : 2D

with

Conclusion

 $\begin{array}{l} 0.951 < g_{z}^{1} < 1.043 \\ 0.835 < \kappa_{\gamma} < 1.052 \\ -0.067 < \lambda_{\gamma} < 0.028 \\ 95 \% \ \mathrm{C.L.} \end{array}$

cTGC in agreement with S.M. expectation

•Since almost all LEP2 data have been analyzed, no significant statistical improvement is foreseen

•LEP sensitivity on cTGC is limited by $O(\alpha)$ systematic

•Work devoted to reduce the $O(\alpha)$ correction uncertainty to 0.005 and to finalize results

•LEP2 data exclude new physics giving effect on cTGC greater than few %

26 July 2002