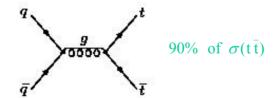
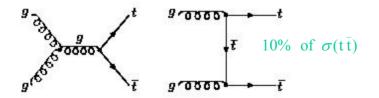
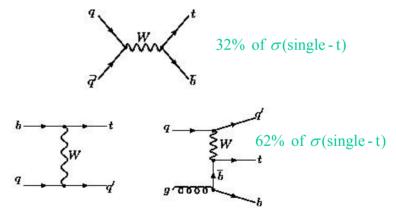
# **Top Quark Physics at the Tevatron**


la lashvili University of California, Riverside


# For the CDF and DØ Collaborations

- Introduction
- Latest results from Run 1
- New results from Run 2
- Summary and prospects


#### Introduction

- Top quark has a special place in the SM SM  $\sqrt{2}M_{\star}/\nu\sim 1$ 
  - The Yukawa coupling,
  - Special role in EW symmetry breaking?
- Discovered at Tevatron in 1995
  - CDF, PRL 74, 2626 (1995)
  - DØ, PRL 74, 2632 (1995)
- Top quarks have been observed in pair pair productionathrough strong interaction:





- 3 classes of signal in tt production:
  - Dilepton 2 high-P<sub>T</sub> leptons, 2 b-jets, large  $E_T^{miss}$  BR(ee,  $\mu\mu$ , e $\mu$ ) = 5%
  - Lepton+Jets —1 high-P<sub>T</sub> lepton, 4jets (2b's), large  $E_T^{miss}$  BR(e, $\mu$ +jets) =30%
  - All-hadronic 6 jets (2b's) BR=44%
- Another mechanism single-top  $\sigma(\text{single-t}) \approx 2.4 \text{pb}$  at  $\sqrt{s} = 1.81 \text{ e}$  production via EW interaction:

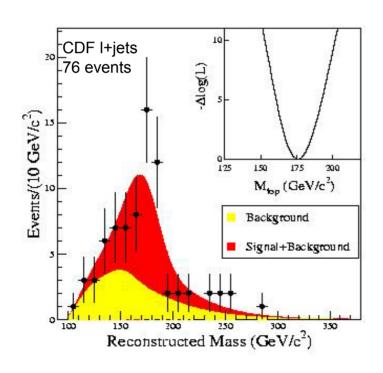


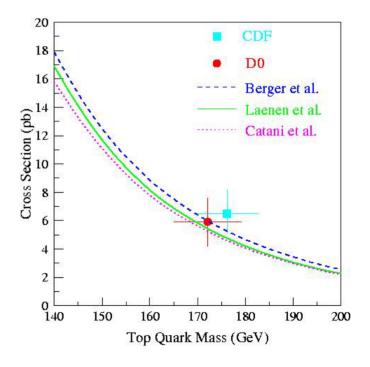
Wealth of information extracted with ~100 events per experiment based based on ~110 pb-1 Run1 data

# **Top Physics in Run 1**

### $t\,t\,\,\text{Xsection and top mass}$

- CDF: 
$$\sigma(t\bar{t}) = 6.5^{+1.7}_{-1.4} pb$$


- DØ: 
$$\sigma(t\bar{t}) = 5.7 \pm 1.2(stat) + 1.0(sys)$$
 pb (hep-ex/0205019,2002)


CDF+ DØ:  $M_{\star} = 174.3 \pm 5.1 \,\text{GeV}$ 

in good agreement with theory

(Phys.Rev.D64 03022, 2001)

(Fermilab-TM-2084, 1999)





# **Top Physics in Run 1**

• Studied top-antitop spin correlation using 6 dilepton events (DØ, Phys.Rev.Lett. 85, 256,2000):

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d(\cos \theta_+) d(\cos \theta_-)} = \frac{1 + k \cos \theta_+ \cos \theta_-}{4}$$

- SM: K ~ 0.9

DØ: K > -0.25 at 68% C.L.

Branching ratio
 R=BR(t→Wb)/BR(t→Wq) and |V<sub>tb</sub>|
 (CDF, Phys.Rev.Lett.86, 3233, 2001):

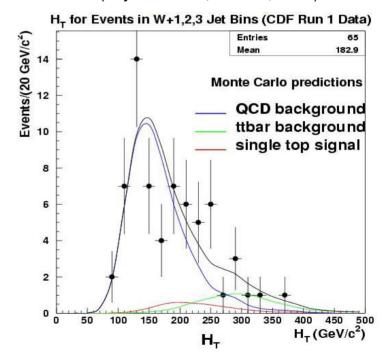
$$R = 0.94^{+0.31}_{-0.24}$$

 $|V_{tb}| = 0.97_{-0.12}^{+0.16}$  assuming 3 generations

 W helicity in top decays using dilepton dilepton and lepton+jets sample (CDF, (CDF, Phys.Rev.Lett. 84, 216, 2000):

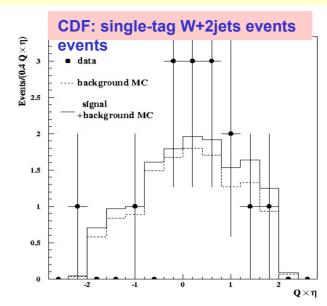
$$F_0 = \frac{\Gamma(h_{\rm W} = 0)}{\Gamma(h_{\rm W} = 0) + \Gamma(h_{\rm W} = -1)}$$
$$= \frac{m_t^2 / (2m_{\rm w}^2)}{1 + m_t^2 / (2m_{\rm w}^2)} \approx 0.7 \text{ in SM}$$

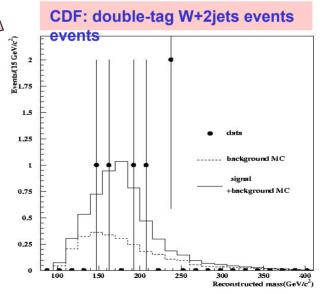
- SM:  $F_0 \approx 0.7$ ,  $F_+ = 0$ - CDF:  $F_0 = 0.91 \pm 0.37 \pm 0.13$ ,  $F_+ = 0.11 \pm 0.15 \pm 0.06$ 


- Top quark P<sub>T</sub> distribution
  (CDF, Phys.Rev.Lett. 87, 102001, 2001;
  DØ, Phys.Rev.D58, 052001,1998)
- All measurements in agreement with the Standard Model

### Search for single top production in Run 1

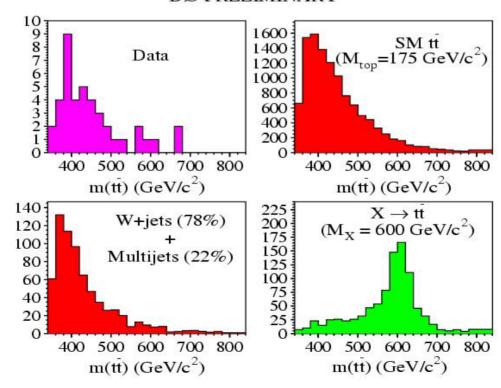
- At Tevatron dominant single top production processes are:
  - $q\bar{q}' \rightarrow t\bar{b}$  (s-channel)
  - $qg \rightarrow t q'\bar{b} (t-channel)$
- Final state consists of W decay products plus jet(s):
  - Searches are restricted to leptonically decaying W → ev, μv


- Single top processes are harder to observe than  $t \bar{t}$  production:
  - final states containing fewer jets suffer from a larger background
  - A priori no sensitivity expected in Run I data, unless new physics processes enhance production rate rate


- CDF and DØ have performed searches searches for s-channel and t-channel channel separately
- CDF has also performed search for two single-top processes combined.
   Derived Xsection limit is:
  - σ (single-t) < 14 pb at 95% C.L. (Phys.Rev.D65, 091102, 2002)

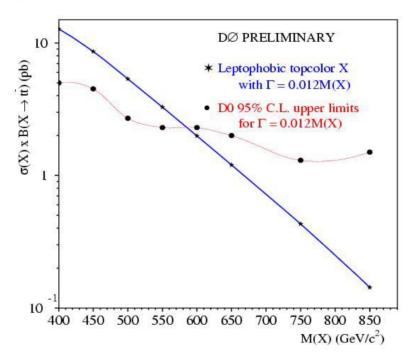


### Search for single top production in Run 1


- To separate two single-top processes consider non-overlapping W+2jets samples:
  - single-tag events -- dominated by t-channel channel
  - double-tag events -- dominated by s-channel channel
- In t-channel light-quark often is in the same hemisphere as the (anti)proton when (anti)top is produced
- In double-tag events use M<sub>Ivb</sub> distribution distribution to extract s-channel contribution
- 95% C.L. limits are set by CDF at:
  - $-\sigma$ (s-channel) < 18 pb
  - σ(t-channel) < 13 pb</li>(Phys.Rev.D65, 091102, 2002)
- 95% C.L. limits derived by DØ:
  - $-\sigma$ (s-channel) < 17 pb
  - σ(t-channel) < 22 pb</li>
    (Phys.Lett.B517, 282, 2001)






# Search for tt resonances in Run 1

- Models with dynamically broken EW symmetry ( "Technicolor") predict existence of top quark condensate X that can decay to t pair,  $X \to t$  t
- Use lepton + jets events. Fit observed distribution of M (t t̄) to derive probability distributions of N<sub>events</sub> for signal, top pair, and other SM background processes.
- Search for narrow  $X \to t \bar{t}$  resonance resonance reduce sensitivity to the model details  $D \varnothing PRELIMINARY$



### Search for tt resonances in Run I

• No statistically significant excess has been observed and therefore 95% C.L. limit has been derived on production Xsection assuming  $\Gamma_v$ =0.012M, and M<sub>i</sub>=175GeV



- For particular model of leptophobic topcolor (C.T.Hill and S.Parke, hep-hep-ph/9911288) DØ excludes M<sub>x</sub> < 560 GeV at 95% C.L.
- Under the same assumption CDF has set lower limit of 480 GeV at 95% C.L. (*Phys.Rev.Lett.85,2062,2000*)

### **Tevatron Upgrade**

- New Main Injector and Recycler Ring
- Improved Antiproton source and Booster
  - Increase pbar yield
  - Increase luminosity
- Increase number of bunches
  - Reduce number of interactions per crossing
  - Reduce bunch spacing

- Increase beam energy 900→980GeV
  - Increase Xsections for interesting physics processes, e.g. by 30-40% for top production:
    - from ~5 to ~7 pb for top pair,
    - from ~2.4 to ~3 pb for single top top

Run 1 
$$\rightarrow$$
 Run 2a  $\rightarrow$  Run 2b  
0.1 fb<sup>-1</sup>  $\rightarrow$  2 fb<sup>-1</sup>  $\rightarrow$  15 fb<sup>-1</sup>

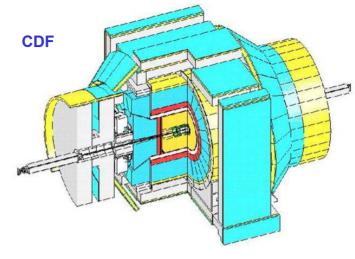
|                                           | Run 1b               | Run 2a               | Run 2b               |
|-------------------------------------------|----------------------|----------------------|----------------------|
| #bunches                                  | 6x6                  | 36x36                | 140x103              |
| √s (TeV)                                  | 1.8                  | 1.96                 | 1.96                 |
| typ L (cm <sup>-2</sup> s <sup>-1</sup> ) | 1.6x10 <sup>30</sup> | 8.6x10 <sup>31</sup> | 5.2x10 <sup>32</sup> |
| ∫ Ldt (pb <sup>-1</sup> /week)            | 3.2                  | 17.3                 | 105                  |
| bunch xing (ns)                           | 3500                 | 396                  | 132 or 396           |
| interaction/xing                          | 2.5                  | 2.3                  | 4.8                  |

Run2 data taking started in spring 2001

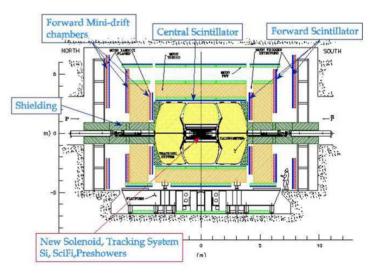
#### **Run 2 detectors**

#### CDF upgrades

- New Silicon Vertex Detector (SVX) and faster tracking drift chamber (COT)
- New scintillating tile end-plug calorimeters
- Increased ηφ coverage for muon detectors
- New scintillator time of flight system


#### DØ upgrades

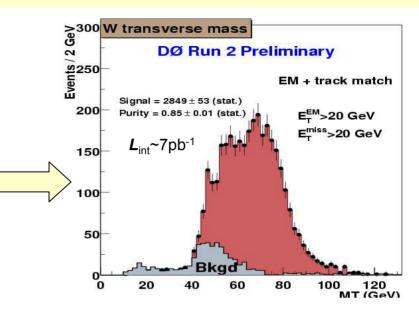
- New Silicon (SMT) and Fiber (CFT) trackers, placed in 2 T magnetic field
- Calorimeter supplemented with the preshower detectors
- Significantly improved muon system




#### **Both detectors:**

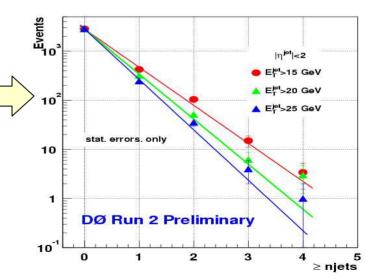
- b-tagging capability through displaced vertices
- Improved lepton identification systems
- Entirely new DAQ and trigger systems to handle high event rate
- Both CDF and DØ will replace Silicon detectors during 2004 shutdown — dictated by radiation damage.



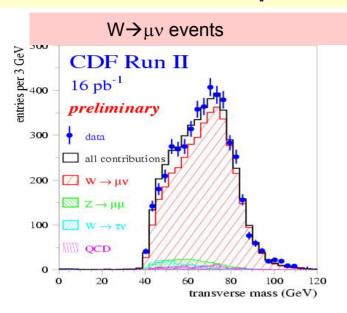

DØ

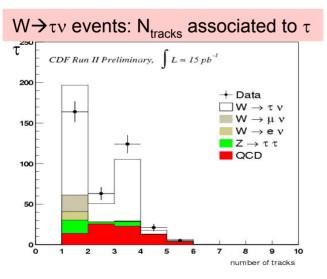


### W → e v candidates in Run 2 DØ data


 W+jets and Z+jets are primary backgrounds to top → Study these processes to asses detector performance before enough top events are detected

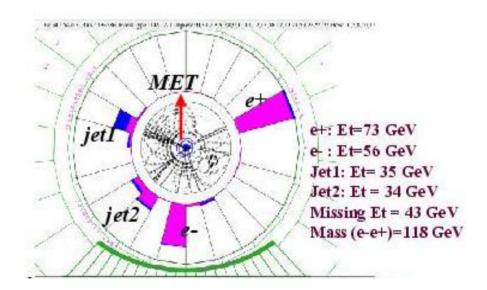
 W transverse mass spectrum in e + missing E<sub>T</sub> inclusive sample. QCD background derived from the data



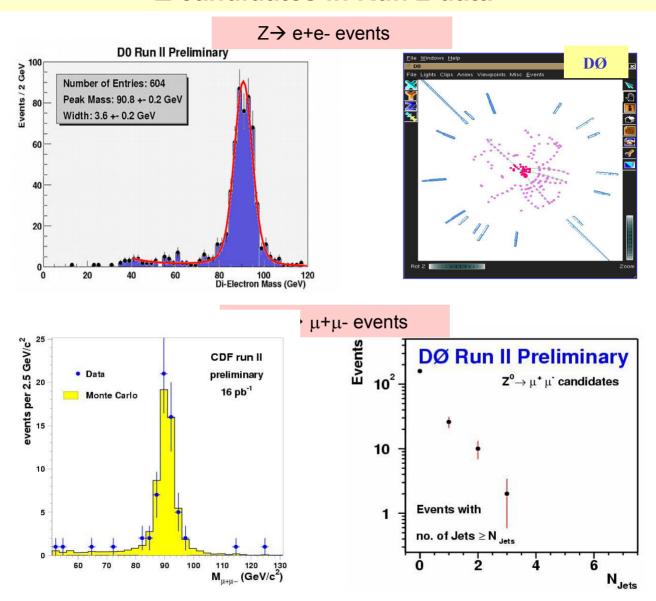


 Inclusive jet multiplicity in background subtructed W→ev sample — follows to linear in log law (Berends scaling)

• With higher statistics and b-tagging requirement, enhancement at W+4jets will indicate ttbar→evj+jjj contribution




### W and Top candidates in Run 2 CDF data



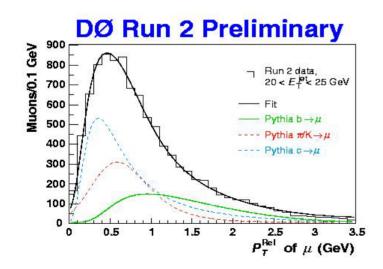



# A top dielectron candidate

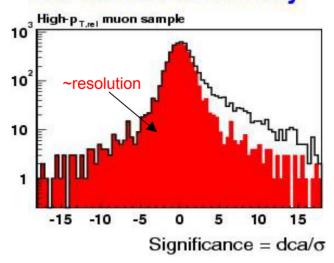
- e+e-,two jets with a large missing Et -Run=136286, event=54713

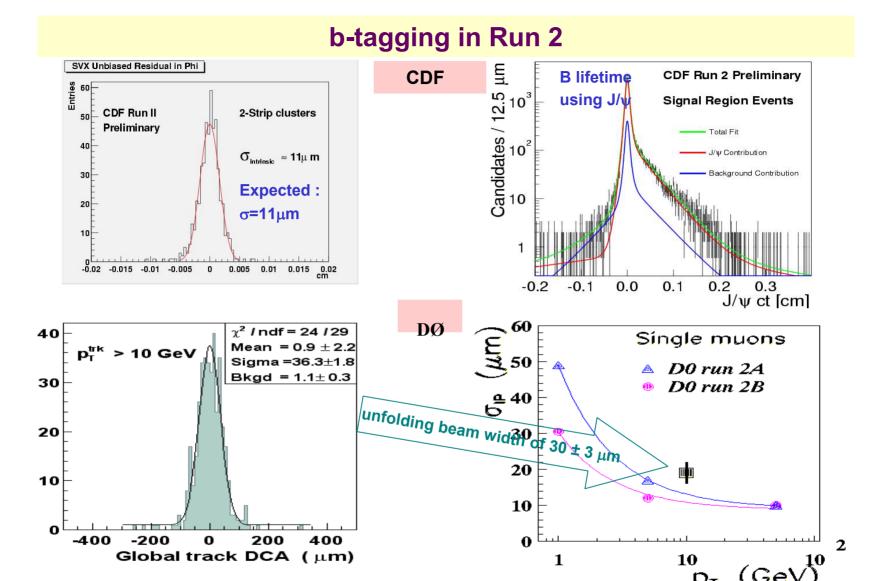


### Z candidates in Run 2 data




### b-tagging in Run 2

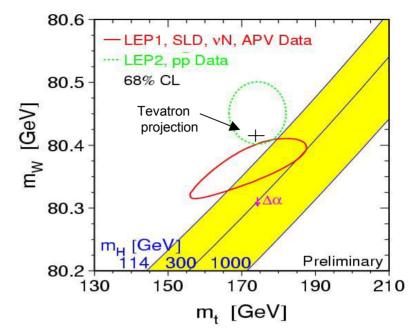

- b-tagging capability important to suppress background to top (W/Z+jets, QCD jets) jets)
- To tag b-jets exploit both techniques:
  - a) soft lepton tagging (SLT);
    b) tagging with displaced vertices
  - Soft Lepton Tagging:
    - B(b→lvc)~20%, B(b→c → lvs)~ 20% with l=e and μ
    - use both muons and electrons looking at P<sub>⊤</sub> relative to jet axis
    - Muon tagging has been checked in data for bbbar decay studies


#### Impact Parameter Tagging:

- study di-jet events with and without muon
- di-jet event containing muon within dR <0.7 and P<sub>T</sub><sup>rel</sup>>1.5 GeV are enhanced in heavy flavour



### DØ Run 2 Preliminary






Current performance is approaching Run 2a design figure for both CDF and DØ

### **Projection on measurement precisions**

- Two largest systematic errors in M<sub>t</sub> are due to Jet Energy Scale (JES) and gluon radiation
- In Run2, Z→ bb decays will be used to limit JES relies on L2 Silicon Track Trigger
- Gluon radiation correction will be constrained by comparing double-tag events with MC simulation
- Expected accuracies by the end of Run2b:
  Top mass ~ 1.4 GeV, W mass ~ 16 MeV. Gives indirect constraint on higgs mass δM<sub>h</sub>/M<sub>h</sub> ~25% (hep-ph/0202001, Snowmass Working Group on Precision EW measurements)



|                                             | Run1 prec. | 2fb <sup>-1</sup>    | 15fb <sup>-1</sup>   |
|---------------------------------------------|------------|----------------------|----------------------|
| M <sub>t</sub>                              | 2.9%       | 1.5%                 | 0.8%                 |
| σ(ttbar)                                    | 25%        | 10%                  | 5%                   |
| W helicity, F <sub>0</sub> , F <sub>+</sub> | 0.4, 0.15  | 0.09, 0.03           | 0.04, 0.01           |
| $R=BR(t\rightarrow Wb)/BR(t\rightarrow Wq)$ | 30%        | 4.5%                 | 0.8%                 |
| V <sub>tb</sub>  , limit at 90% C.L.        | >0.05      | >0.25                | >0.50                |
| σ(single-top)                               | -          | 20%                  | 8%                   |
| Γ(t→Wb)                                     | -          | 25%                  | 10%                  |
| V <sub>tb</sub>                             | -          | 12%                  | 5%                   |
| BR(t→γq)                                    | 0.03       | 2 x 10 <sup>-3</sup> | 2 x 10 <sup>-4</sup> |
| BR(t→Zq)                                    | 0.30       | 0.02                 | 2 x 10 <sup>-3</sup> |

### **Summary**

- Successful top quark physics program at Run 1
  - All measurements consistent with the Standard Model Model
  - But limited in statistics
- We are entering exciting era of Run 2. Performance Performance of upgraded CDF and DØ detectors are are already close to expectations — many improvements relevant to top physics
- Tevatron Run 2 will allow to precisely measure top quark properties. Signs of new physics could well show up first in these measurements.