Electroweak Prospects for TeVatron RunII

D.Glenzinski Wilson Fellow/Fermilab-CDF

(on behalf of the CDF and D0 Collaborations)

ICHEP02, Amsterdam, Netherlands, 24-31 July 2002

Data Sets for RunII EWK Physics:

Event yields in per experiment				
Sample	Run I	Run IIa		
W→Iv	77k	2300k		
Z→II	10k	202k		
WV (W→Iv, V=W,γ,Z)	90	1800	• 100	
ZV (Z→II, V=W,γ,Z)	30	500	• 2 fb	
tt (mass sample, >=1Btag)	20	800	• = e	

 \mathbf{E}_{-}

- pb⁻¹/exp in RunI
 - o⁻¹/exp in RunIIa

•
$$I = e \text{ or } \mu$$

- RunI produced breadth of Electroweak physics results and provided world's only sample of top quarks
- RunII physics EWK "program" basically the same
- → RunII Upgrades ought yield many precision (<1%) results

RunII TeVatron Upgrades:

- RunIIa Luminosity Goals
 - 5-8 E31 cm⁻²/sec (w/o Recycler)
 - 10-20 E31 cm⁻²/sec (w/ Recycler)
 - integrated: 2-5 fb⁻¹ (2004)
- RunIIb Luminosity Goals

- 40-50 E31 cm⁻²/sec
- integrated: 15 fb⁻¹ (2007)
- $\sqrt{s} = 1.96 \,\mathrm{TeV}$
 - $-\sigma(W), \sigma(Z) \sim 10\%$ higher
 - $-\sigma(tt) \sim 35\%$ higher

RunII Detector Upgrades:

- CDF
 - 8 layers of silicon (r_{max} =30 cm)
 - new drift chamber (COT)
 - extended lepton-ID ($|\eta|$ >1)
 - displaced track trigger

- Projections assume:
- ✓ E and P resolutions same/better RunI

- D0
 - 4 layers plus disks of silicon
 - new fiber tracker (CFT)
 - solenoid (2 Tesla)
 - extended lepton-ID ($|\eta|$ >1)

✓ B-jet and lepton ID extended to |η|>1

✓ improved triggering

TeVatron RunII

At this early stage, it's interesting to ask whether or not the detector performance looks consistent with those expectations.

➔ Discuss present detector performance in the context of some of RunII Electroweak measurements of particular importance.

Electroweak Physics at the TeVatron

<u>Precision M_w, M_{top}:</u> - CDF/D0 direct measurements compliment e+e- results - provide consistency checks - will improve indirect constraints on M_H w/i SM

Search for SM Higgs:

- Light Higgs discovery possible
- Observation or not, SM will be tested by comparison of M_H to indirect limits from EWK fit

→ discuss detector performance in the context of these measurements

Measuring Mw at the TeVatron

- 3. From M_T distribution extract measure of Mw
 - → sensitive to PDFs (use forward calorimeters)

Run1 W Mass

CDF/D0 Combined

Statistical: 40 MeV Systematic scale: 40 MeV ⁺ recoil: 20 MeV ⁺ modeling: 15 MeV ^{*} other: 15 MeV ⁺ Sys Total: 38 MeV

+ largely statistical in nature
*correlated among experiments

<u>From RunI</u> CDF: 80.433 +/- 0.079 GeV D0: 80.483 +/- 0.084 GeV Comb: 80.456 +/- 0.059 GeV

After 2 fb-1 at RunII, expect ΔM_w=+/-30 MeV/exp ΔM_w(Wrld)=+/-15-20 MeV

RunII projections assume detectors will perform similarly to RunI so that, M uncertainty to ~scale w/ statistics

 \rightarrow How will P_t^{ν} resolution scale with inst. Luminosity?

Momentum Scales & Resolutions in RunII

Use low lying resonances to get P scale/resolution

9

D0's Central Fiber Tracker Performance:

Very different from RunI:

- fiber tracker
- -r = 0.20 0.51 m
- 8 axial hits
- 8 stereo hits
- in 2T field
- $\sigma(Pt)/Pt^2(design) = 0.14\%/GeV$
- Per layer hit efficiencies:
 - $\mathcal{E}(\text{axial layers}) = 99\%$
 - $\mathcal{E}(\text{stereo layers}) = 98\%$
 - (expect high tracking efficiency)

→ Alignment well underway, significant improvements expected.

Energy Scales & Resolutions in RunII

- Nominally, use E/P distributions to set absolute scale and resolution
 - assumes P-scale/resolution thoroughly understood

 \rightarrow at this early stage, use Z \rightarrow ee to estimate E resolution

D0's ECAL Performance:

For central & forward:

- partial corrections included
- $\sigma(data)/\sigma(mc) < 1.30$
- w/ inclusion of full corrections expect to meet expectations

CDF's ECAL Performance:

Extending lepton-ID:

extending Mw and asymmetry measurements to large $|\eta|$ reduces Mw PDF uncertainties (which are CDF/D0 correlated)

Measuring Mtop at the TeVatron

tt production at the TeV:

tt**→**W⁺bW⁻b

- Final states (2 B-jets + Ws):
- dilepton (2 W \rightarrow lv)
- lepton+jets (W \rightarrow lv,W \rightarrow qq)
- all hadronic (2 W→qq)

To extract M_{top...}

- Choose W→jj and t→Wb associations → Combinatorics reduce sensitivity
- Make appropriate jet energy corrections
 Large systematic uncertainty
 - Kinematic Fit for M_{fit}
- 4. Extract M_{top} from M_{fit} distribution

most important channel

1.

3.

Run1 Top Mass

"Typical" Mtop Uncertainties/exp

Statistical: 5 GeV Systematic scale: 4 GeV modeling: 2 GeV * other: 2 GeV Sys Total: 5 GeV From Run1 CDF: 176.1 +/- 6.6 GeV D0: 172.1 +/- 7.1 GeV Comb: 174.3 +/- 5.1 GeV

After 2 fb-1 at Run2, expect ΔM_{top} =+/- 2-3 GeV/exp

*correlated among experiments

 → increased acceptance and ott gives factor of 50 in statistics (RunIIa will have ~800 lepton+jet evts in mass sample, RunI ~20) so expected RunIIa stat uncertainty: less than +/- 1GeV

→ reducing total systematic to 2 GeV level requires use of special control samples (Z+jets, Z→bb, W→qq) too small to be of use in RunI

Top Mass: Combinatorics

D0's Silicon Microstrip Tracker Performance:

- 95% working channels (and regularly taking data)
- precision alignment of "z"-strips underway

CDF's Silicon VerteX Detector Performance:

S/N = 12, Hit efficiency >99%, $\sigma(\text{intrinsic 2strip } r\phi) = 11 \mu m$

- Performing as expected
- 92% working channels (presently, 85% regularly taking data)
- precision alignment of "z"-strips underway

SM Higgs Search at the TeVatron

Need to use H→bb and H→WW to maintain sensitivity over wide mass range

SM Higgs Search at the TeVatron

Observation possible with >2 fb⁻¹ of integrated luminosity

- assumes good B-jet and lepton ID to full acceptance
- assumes detector resolutions at least as good as RunI
- assumes triggers efficient at large inst. luminosities

Triggers

 \rightarrow lepton triggers operating at high ε ... important to maintain at high instantaneous luminosities!

SM Higgs Background Studies

H→WW→eevv in 9 pb⁻¹ of data • do we understand our backgrounds?

D0 RunII Preliminary

Cut	Predicted	Obsrvd
ID,Pt>20 GeV	430+/-58	452
+Mee<78 GeV	35+/-6	46
+Et>20 GeV	4.9+/-1.3	5
+jet veto	3.1+/-1.3	2
$+\Delta \phi ee \leq 2 rads$	0.3+/-1.2	1

→ continue to develop analyses which build confidence in background modeling/expectations for larger data sets

RunIIa: Electroweak Physics

- $\Delta M_w = 30 \text{ MeV/exp}$
- $\Delta M_{top} = 3 \text{ GeV/exp}$
- start having sensitivity to SM M_H>115 GeV

Tevatron upgrades:

• luminosities of $2x10^{32}$ $\int Ldt = 2 \text{ fb}^{-1}$ in 2 years

•
$$\sqrt{s} = 1.96 \text{ TeV}$$

- $\sigma(W)$, $\sigma(Z) \sim 10\%$ higher
- $\sigma(tt) \sim 35\%$ higher

Detector upgrades:

- increased B-jet and lepton ID acceptance and triggering
- performance on track to meet expectations

EWK Prospects are good!