W Boson Cross Sections and Decay Properties at the Tevatron

Ken Bloom University of Michigan for the CDF and D0 Collaborations

- Run II (2002)
 - $-\sqrt{\mathrm{s}}=1.96~\mathrm{TeV}$, 8-17 pb $^{-1}$
 - Results: $\sigma^{\rm W,Z}$
- Run I (1992-1996)

 $-\sqrt{\mathsf{s}}=$ 1.8 TeV, 80-110 pb $^{-1}$

– Results: W-decay angular distributions, $\sigma^{\rm W,Z}({\bf p_T})$

W,Z cross sections in Run II ($\sqrt{s} = 1.96$ TeV)

- Why care about boson production cross sections?
 - Test consistency of SM couplings
 - Constrain proton PDF's
 - Understand higher-order QCD contributions
- Why *really* care about boson production cross sections?
 - Requires good understanding of experiment: detection efficiencies, backgrounds, luminosity.
 - If experimental and theoretical uncertainties are small, can be used to measure luminosity, normalize other measurements.
 - A pathway to the physics goals of Run II: $t \to Wb$, $(W^*,Z^*) \to (W,Z)H$, precision electroweak measurements....
- An early test of the capabilities of Tevatron experiments.
- \bullet Cross sections should increase by $\sim 10\%$ from 1.8 TeV can it be seen?

• Reminder: at the Tevatron,

- -W =one high-momentum lepton plus large missing energy (neutrino).
 - * Cannot measure p_Z^{ν} , all measurements in transverse plane.
- Z = two high-momentum opposite-sign leptons, $M_{\ell\ell} \sim 90$ GeV.

$$\sigma \cdot \mathsf{B} = \frac{\mathsf{N}_{\mathsf{obs}} - \mathsf{N}_{\mathsf{bg}}}{\mathsf{A}\epsilon / \mathcal{L} \mathsf{dt}}$$

- Elements of cross-section measurement:
 - $-\,N_{obs}=$ number of events observed
 - $-N_{bg} = estimated number of background events$
 - -A = kinematic and geometric acceptance
 - $-\epsilon = \text{total efficiency}$
 - $-\int \mathcal{L} dt = integrated$ luminosity

Understanding samples – CDF $W \rightarrow e\nu$, $W \rightarrow \mu\nu$

- Look at isolated, high-p_T monojet events with large missing energy.
- See charged-track multiplicity in jet consistent with τ decay, after accounting for backgrounds.

	W ightarrow e u	$W o \mu u$
N _{obs}	5547	4561
N_{bg}	409 ± 85	569 ± 63
A (%)	23.4 ± 0.9	14.2 ± 0.4
€ (%)	81.1 ± 1.8	63.2 ± 3.8
$\int \mathcal{L} dt (pb^{-1})$	10.4 ± 1.0	16.5 ± 1.6
$\sigma \cdot B (nb)$	$2.60\pm0.03_{\rm stat}$	$2.70\pm0.04_{stat}$
	\pm 0.13 _{sys} \pm 0.26 _{lum}	$\pm~0.19_{ m sys}\pm~0.27_{ m lum}$

CDF Run II Preliminary

- 10% luminosity uncertainty is an upper limit!
- Best CDF Run I result: $\sigma \cdot B(W \rightarrow e\nu) = 2.49 \pm 0.12 \text{ nb.}$
- Theory predictions at NNLO (W. Stirling): $-\sigma \cdot B = 2.50 \text{ nb} @ \sqrt{s} = 1.8 \text{ TeV} \rightarrow 2.73 \text{ nb} @ \sqrt{s} = 1.96 \text{ TeV}$
- Measurements consistent with expected rise in cross section.

	W ightarrow e u
N _{obs}	9205
N_{bg}	5782 ± 357
A (%)	19.6 ± 0.9
€ (%)	86.5 ± 3.6
$\int \mathcal{L} dt (pb^{-1})$	7.5 ± 0.8
$\sigma \cdot B (nb)$	$2.67\pm0.06_{stat}$
	\pm 0.33 _{sys} \pm 0.27 _{lum}

- Systematic uncertainty dominated by background estimates
- Best D0 Run 1 result: $\sigma \cdot B(W \rightarrow e\nu) = 2.36 \pm 0.15$ nb
- Measurement consistent with expected rise in cross section.

σ^{Z} and cross-section ratio – D0 electrons

D0 Run II preliminary

- Z cross section: $\sigma \cdot B(Z \rightarrow ee) = 266 \pm 20_{stat} \pm 20_{sys} \pm 27_{lum} \, pb$
- \bullet Also measure R = $\sigma^{\rm W}/\sigma^{\rm Z}:~{\rm R_e} = 10.0 \pm 0.8_{\rm stat} \pm 1.3_{\rm sys}$
- \bullet Theory gives R = 10.91; D0 Run I result R = 10.90 \pm 0.52.
- With

$$\mathsf{R}_{\mathsf{e}} = \frac{\sigma(\mathsf{p}\bar{\mathsf{p}} \to \mathsf{W})}{\sigma(\mathsf{p}\bar{\mathsf{p}} \to \mathsf{Z})} \frac{\mathsf{\Gamma}(\mathsf{W} \to \mathsf{e}\nu)}{\mathsf{\Gamma}(\mathsf{Z} \to \mathsf{e}\mathsf{e})} \frac{\mathsf{\Gamma}(\mathsf{Z})}{\mathsf{\Gamma}(\mathsf{W})}$$

extract

$$\label{eq:GeV} \begin{split} \Gamma(W) &= 2.26 \pm 0.18_{stat} \pm 0.29_{sys} \pm 0.04_{ext}\, GeV, \\ \text{current world average } 2.114 \, \pm \, 0.043 \ \text{GeV}. \end{split}$$

Cross-section summary – CDF/D0 Run II preliminary

K. Bloom, U. of Michigan

W-decay angular distributions

- Understanding QCD effects in W production helps reduce uncertainties in M_W and other electroweak measurements.
- Without QCD, $p_T^W = 0$, differential cross section for charged lepton in W decay $\propto (1 \pm \cos \theta)^2$.
- In NLO QCD, differential cross section in Collins-Soper rest frame is

$$\begin{array}{l} \displaystyle \frac{\mathsf{d}^4\sigma}{\mathsf{d}\mathsf{p}_\mathsf{T}^\mathsf{W}\mathsf{d}\mathsf{y}\mathsf{d}(\cos\theta)\mathsf{d}\phi} \propto 1 + \cos^2\!\theta + \\ & \mathsf{A}_0(1 - 3\cos^2\!\theta)/2 + \mathsf{A}_1\mathsf{s}\mathsf{i}\mathsf{n}2\theta\mathsf{c}\mathsf{c}\mathsf{s}\phi + \\ & \mathsf{A}_2(\mathsf{s}\mathsf{i}\mathsf{n}^2\theta\mathsf{c}\mathsf{c}\mathsf{s}2\phi)/2 + \mathsf{A}_3\mathsf{s}\mathsf{i}\mathsf{n}\theta\mathsf{c}\mathsf{c}\mathsf{s}\phi + \\ & \mathsf{A}_4\mathsf{c}\mathsf{o}\mathsf{s}\theta + \mathsf{A}_5\mathsf{s}\mathsf{i}\mathsf{n}^2\theta\mathsf{c}\mathsf{c}\mathsf{s}2\phi + \\ & \mathsf{A}_6\mathsf{s}\mathsf{i}\mathsf{n}2\theta\mathsf{s}\mathsf{i}\mathsf{n}\phi + \mathsf{A}_7\mathsf{s}\mathsf{i}\mathsf{n}\theta\mathsf{s}\mathsf{i}\mathsf{n}\phi \end{array}$$

where A_i depend on p_T^W , y.

- Angular distributions at $p_T^W \neq 0$ probe $A_i,$ predicted by NLO QCD.
- Previous D0 measurement of A_0 , new CDF results for A_0 , A_2 and A_3 .

CDF A_0 via M_T distribution

• Integrating over ϕ ,

$$\frac{d\sigma}{d(\cos\theta)} \propto 1 \pm \alpha_1 cos\theta + \alpha_2 cos^2\theta,$$

with $\alpha_1 = A_4/(2 + A_0)$, $\alpha_2 = (2 - 3A_0)/(2 + A_0)$.

• M_T distribution is sensitive to α_2 . \Rightarrow study shape as a function of p_T^W .

- Measured $\alpha_2(p_T^W)$ is consistent with QCD predictions, and D0 measurements.
- Decreasing α_2 = increasing longitudinal polarization!
- Results are statistics-limited, systematic uncertainties dominated by M_W, p^W_Z, and recoil model.

CDF A_2 and A_3 *via* ϕ distribution

- The lepton ϕ distribution is sensitive to A₂ and A₃.
- \bullet Require at least one hadronic jet in the event, so that $p_T^W>0.$

K. Bloom, U. of Michigan

- Results consistent with QCD prediction.
- A_2 result is systematics limited, dominated by knowledge of $A_{0,4}$, renormalization and factorization scale.
- A₃ result is statistics-limited.

- Measure $d\sigma^W/dp_T^W$ by measuring $R(p_T) = \frac{d\sigma^W}{dp_T^W} / \frac{d\sigma^Z}{dp_T^Z}$.
 - Trade systematic/theoretical uncertainties for statistical uncertainty from Z measurements.
- Good agreement (histograms) with direct measurement (points), method becomes more precise with larger datasets.
- See PL B517, 299 (2001).

- Sophisticated analyses of Run I data soon to be completed.
- Run II analyses of W and Z bosons are underway:
 - Established techniques to identify bosons with high efficiency.
 - Good understanding of acceptances and efficiencies, will improve.
 - W cross-section measurements are
 * consistent with theory predictions and previous measurements
 * systematics limited
 - Z cross section, R are statistics-limited.
- A solid foundation for future high-p_T physics studies!