

André Sopczak

Lancaster University

On behalf of the ECFA/DESY Higgs boson study group with contributions from US and Asian Higgs study groups

Many thanks for contributions from: M.Battaglia, J.-C. Brient, K.Desch, F.Gianotti, A.Gay, E.Gross, J.Guasch, A.Kiiskinen, R.Van Kooten, N.Meyer, S.Penaranda, J.Schreiber, M.Schumacher, S.Yamashita

- Standard Model Physics
 - Higgs boson production mechanism
 - Indirect and direct branching ratio measurements
 - Characterization of the Higgs boson potential
 - Higgs boson strahlung from top quarks
- The General Two-Doublet Higgs Model
 - Charged Higgs bosons
 - Determination of the ratio of the VEV $\tan\beta$
- MSSM and beyond
 - Invisible Higgs boson decays
 - Higgs boson parity
 - Distinction of Higgs boson models
- Conclusions

- Linear e^+e^- Collider of at least $\sqrt{s} = 500$ GeV and high luminosity: large potential to study Higgs bosons and understand electroweak symmetry-breaking and mass generation.
- e⁺e⁻ collider, LEP: immense progress for Higgs boson searches, almost background free at LEP-1 and sensitivity beyond expectations at LEP-2.
- 10 years of Linear Collider Higgs studies: from discovery to precision measurements.
- New milestones: TESLA TDR 2001, Snowmass 2001, next Korea LCWS 2002.
- Recommendation to build TESLA by the German Science Council, July 2002.
- Review with focus on new results and developments.

André Sopczak

Very high sensitivity at a LC, and extended mass reach at the LHC.

Higgs Boson Strahlung/Fusion

André Sopczak

 $e^+e^- \to ZH \to \nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b}$ $e^+e^- \to W^+W^-\nu\bar{\nu} \to \nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b}$

Van Kooten, LCWS, Baltimore, March 2001

Detailed determination of Higgs boson production mechanism.

General Cross Section Sensitivity

SM Decay Branching Ratios

 $e^+e^- \rightarrow HZ \rightarrow H\ell^+\ell^-$

- Indirect $BR(H \to X)$ determination: Inclusive: $\sigma_{inc} = \sigma_{HZ} BR(Z \to \ell^+ \ell^-)$ Individual: $\sigma(X) = \sigma_{HZ} BR(Z \to Y) BR(H \to X)$
- Direct $BR(H \rightarrow X)$ determination:

Selection of a HZ sample $\mathbb{Z} \to \ell^+ \ell^-$, where $m_{\mathrm{H}} = m_{\ell^+ \ell^-}^{\mathrm{recoil}}$. Selection in this sample of individual Higgs decay modes.

ents	$\sqrt{s} = 360 \text{ GeV}$	Decays mode	SM branching ratio(%)	$\Delta BR/BR(\%)$
	$\mathcal{L} = 500 \; \mathrm{fb}^{-1}$	bb	68	1.5
400-		au au	6.9	4.1
	↓ ↓ ↓↓	cc	3.1	5.8
	·∱↓ · · · · · · · · · · · · · · · · · ·	gluons	7.0	3.6
		$\gamma\gamma$	0.22	21
100 rec	120 140 160 18 oil di-lepton mass GeV	80 WW*	13	2.7

Complementarity with LHC, higher precision and all decay modes. Test: $g_{\rm Hff} \propto m_{\rm f}$

Brient, LC-PHSM-2002-003

SM Higgs Mass and Decay Width

 $e^+e^- \rightarrow HZ \rightarrow WWZ$ $e^+e^- \rightarrow HZ \rightarrow ZZZ$

Drollinger, Sopczak, EPJdirect **C-N1** (2001) 1

 $\Delta m_{\rm H}/m_{\rm H} = 0.08\%$ $\Delta \Gamma_{\rm H}/\Gamma_{\rm H} = 11\%$

SM Higgs Boson Potential

Battaglia, Boos, Yao, hep-ph/0111276

Triple Higgs boson coupling: $g_{\rm HHH} = 3m_H^2/2v$, where v = 246 GeV.

Sensitivity $\Delta g/g = 29\%$

Sensitivity $\Delta g/g = 7\%$

SM Higgsstrahlung ttH

2DHM Charged Higgs Bosons

$$e^+e^- \rightarrow Z \rightarrow H^+H^- \rightarrow t\bar{b}\bar{t}b$$

Battaglia, Ferrari, Kiiskinen, hep-ph/0112015

 $\Delta(\sigma BR(\mathrm{H^+} \to \mathrm{t\bar{b}}))/\sigma BR(\mathrm{H^+} \to \mathrm{t\bar{b}}) = 8.8\%$

2DHM Higgsstrahlung bbA

Gunion, Han, Jiang, Mrenna, Sopczak hep-ph/0112334

Further methods: 2) $e^+e^- \rightarrow HA \rightarrow b\bar{b}b\bar{b}$ rate

3) H,A decay width

André Sopczak

MSSM Higgsstrahlung bbH

MSSM Invisible Higgs Boson Decays

 $e^+e^- \rightarrow ZH \rightarrow Z\tilde{\chi}^0\tilde{\chi}^0: m_H = m_Z^{recoil}$

Schumacher, LCWS, Cracow, Sep. 2001

LEP: All Z decay modes, here first $Z \rightarrow q\bar{q}$.

Higher sensitivity cf. indirect method (1 - sum of visible H decay modes).

 $\Delta BR/BR < 4\%$ for $BR(H \rightarrow inv.) > 20\%$ and SM production rate.

Higgs Boson Parity

H: CP-even

A: CP-odd $H/A \to \tau^+ \tau^- \to \rho^+ \bar{\nu}_\tau \rho^- \nu_\tau \to \pi^+ \pi^0 \bar{\nu}_\tau \pi^- \pi^0 \nu_\tau$

Bower, Pierzchal, Wąs, Worek, hep-ph/0204292

Difference between scalar (thick line) and pseusoscalar (thin line) Higgs bosons can be determined.

André Sopczak

Distinction of Models

$R = BR(H \rightarrow b\bar{b})/BR(H \rightarrow \tau^+ \tau^-)$

MSSM predicts large effects in all scenarios: LHC large $\tan \beta$, LC all $\tan \beta$

 $\frac{BR(\mathrm{H}\rightarrow\mathrm{b}\bar{\mathrm{b}})/BR_{\mathrm{b}\bar{\mathrm{b}}}^{\mathrm{SM}}}{BR(\mathrm{H}\rightarrow\mathrm{W}^{+}\mathrm{W}^{-})/BR_{\mathrm{W}^{+}\mathrm{W}^{-}}^{\mathrm{SM}}} \ .$

< 3.5% < 20%

 \Rightarrow stronger A mass prediction at a LC

Miller, Nevzorov, Zerwas, SUSY02, June 2002

NMSSM: extra singlet λNH_1H_2 e.g. $m_{H^+}^2 = m_A^2 + m_{W^+}^2 - 0.5\lambda^2 v^2$ Measurement of m_{H^+} and m_A \Rightarrow MSSM or beyond

- After a first discovery at the Tevatron or the LHC and initial precision measurements, already in the first phase of a LC, all Higgs boson decay modes will be measured with very high precision.
- Models like the SM, the general 2DHM, the MSSM or the NMSSM will be distinguished for a wide range of parameters.
- The underlying mechanism of symmetry breaking and mass generation will be tested.
- The model parameters will be measured and the Higgs boson might be known as precisely as is the Z boson today.
- Like for the top quark (LEP mass prediction, Tevatron observation), important consistencies of the model can be probed with combined LC and LHC physics.
- After 10 years of preparational studies the LC has a solid case and the HEP community is prepared to answer fundamental questions over the next decades.