

Heavy Ion Physics with the CMS Experiment at the Large Hadron Collider

Bolek Wyslouch MIT for the CMS Collaboration

31st ICHEP, Amsterdam, July 2002

The Physics Landscape: Pb+Pb Collisions SPS->RHIC->LHC

	SPS (17)	RHIC (200)	LHC (5500)
$dN_{ch}/d\eta$	350	700	3000-8000?
$\epsilon~[{ m GeV}/{ m fm}^3]$	≈ 2.5	$\approx 3.5 - 7.5$	$\approx 15 - 40$
$(t_0 = 1 \mathrm{fm/c})$	1	2	10
V_f [fm ³]	$pprox 10^3$	$pprox 7*10^3$	$\approx 2*10^4$
	1	7	20
$ au_{QGP} \; [{ m fm/c}]$	≤ 1	1.5 - 4	4-10
	1	3	7
$ au_0$	≥ 1	≈ 0.5	≤ 0.2
τ_{QGP}/ au_0	1	6	≥ 30

Bolek Wyslouch

CMS as a Detector for Heavy Ion Physics

High Resolution and High Granularity Calorimetry

- $\Delta\eta x \Delta \phi$ (barrel)
 - ECAL:0.0174x0.0174
 - ◆ HCAL: 0.087x0.087

Resolution (barrel)

- ◆ ECAL:0.027/√E⊗0.0055
- ♦ HCAL:1.16/√E⊗0.05
- Hermetic coverage up to |η|<5 (|η|<7 proposed using CASTOR)
- Zero Degree Calorimeter (proposed)

Tracking μ from Z⁰, J/ ψ , Υ

- Wide rapidity range |η|<2.4
- Efficient suppression of π , $K \rightarrow \mu$ background
 - ◆ ECAL at 1.3 m from the beam
 - $\blacklozenge~\mu$ chambers behind HCAL
 - ♦ reject "kinks" using tracker
- Excellent M mass resolution ~50 MeV @ Υ

DAQ and Trigger

- High rate capability for AA, pA, pp
- High Level Trigger capable of full reconstruction of most HI events in real time

 $\mu \text{ chambers}$

CMS as a Heavy Ion Experiment

Excellent detector for high p_T **probes:**

• High rates and large cross sections

- quarkonia (J/ ψ , Υ) and heavy quarks (bb)
- \blacklozenge high p_T jets
- high energy photons
- ♦ Z⁰

Correlations

- ♦jet-γ
- ♦jet-Z⁰
- ♦ multijets

Global event characterization

- Energy flow to very forward region
- Charged particle multiplicity
- Centrality

CMS can use highest luminosities available at LHC both in AA and pA modes

CMS under construction

Bolek Wyslouch

2/4/02

Calorimeter FIN Labo 2

July 27, 2002

Ions

Zero Degree Calorimetry for CMS

Extending CMS

CMS is designed for high luminosity pp pp events are large to account for pileup effects

Quarkonia in CMS

J/ψ Y family

Yield/month (kevents, 50% eff) Nominal luminosity for each ion species

	Pb+Pb	Sn+Sn	Kr+Kr	Ar+Ar
L	1027	1.7 10 ²⁸	6.6 10 ²⁸	10 ³⁰
J/ψ	28.7	210	470	2200
ψ'	0.8	5.5	12	57
Y	22.6	150	320	1400
Y'	12.4	80	180	770
Y"	7	45	100	440

Pb+Pb, **1** month at L=10²⁷

Quarkonia from Different Ion Species

 J/ψ

Window

Jet Reconstruction in CMS

- Subtract average pileup
- Find jets with sliding window
- Build a cone around E_T^{max}
- Recalculate pileup outside the cone
- Recalculate jet energy

Full jet reconstruction in Pb+Pb central collisions (dN/dy~8000)

CMS

Balancing γ or Z⁰ vs Jets: Quark Energy Loss

Jet Fragmentation, Effect of Nuclear Matter on Jet Structure

- Find jets using calorimetry
- Study charged particle momenta inside of a jet using the tracker
- For this study use 4-5 outer layers of the tracker (use conservative resolution obtained in pp studies: AA plausible with low occupancy in outer layers)

Conclusions

LHC will extend energy range and in particular high p_T reach of heavy ion physics

CMS is preparing to take advantage of its capabilities

Excellent coverage and resolution

- ♦ Quarkonia
- ♦ Jets

Essentially no modification to the detector hardware

- New High Level Trigger algorithms
- Zero Degree Calorimeter and CASTOR as relatively minor additions

The knowledge gained at RHIC will be extended to new energy domain

μμ reconstruction: algorithm

