Scaling of Charged Hadron p_T distributions in Au+Au collisions at 200 GeV

Gerrit van Nieuwenhuizen _{MIT} for the PHOBOS Collaboration

ICHEP 2002 July 24-31, 2002, Amsterdam

ICHEP 2002, Amsterdam

ARGONNE NATIONAL LABORATORY Birger Back, Alan Wuosmaa BROOKHAVEN NATIONAL LABORATORY Mark Baker, Donald Barton, Alan Carroll, Nigel George, Stephen Gushue, George Heintzelman, Burt Holzman, Robert Pak, Louis Remsberg, Peter Steinberg, Andrei Sukhanov INSTITUTE OF NUCLEAR PHYSICS, KRAKOW Andrzej Budzanowski, Roman Hołyński, Jerzy Michałowski, Andrzei Olszewski. Pawel Sawicki. Marek Stodulski. Adam Trzupek, Barbara Wosiek, Krzysztof Woźniak MASSACHUSETTS INSTITUTE OF TECHNOLOGY Maartin Ballintiin, Wit Busza (Spokesperson), Patrick Decowski, Kristjan Gulbrandsen, Conor Henderson, Jay Kane, Judith Katzy, Piotr Kulinich, Jang Woo Lee, Heinz Pernegger, Corey Reed, Christof Roland, Gunther Roland, Leslie Rosenberg, Pradeep Sarin, Stephen Steadman, George Stephans, Carla Vale, Gerrit van Nieuwenhuizen, Gábor Veres, Robin Verdier, Bernard Wadsworth, Bolek Wysłouch NATIONAL CENTRAL UNIVERSITY, TAIWAN Chia Ming Kuo, Willis Lin, Jaw-Luen Tang Russell Betts, Edmundo Garcia, Clive Halliwell, David Hofman, UNIVERSITY OF ILLINOIS AT CHICAGO Richard Hollis, Aneta Iordanova, Wojtek Kucewicz, Don McLeod, Rachid Nouicer, Michael Reuter, Joe Sagerer UNIVERSITY OF MARYLAND Abigail Bickley, Richard Bindel, Alice Mignerey, Marguerite Belt Tonjes UNIVERSITY OF ROCHESTER Joshua Hamblen, Erik Johnson, Nazim Khan, Steven Manly, Inkyu Park, Wojtek Skulski, Ray Teng, Frank Wolfs

ICHEP 2002, Amsterdam

The PHOBOS Apparatus

ICHEP 2002, Amsterdam

The PHOBOS Spectrometer

- Outer layers situated in 2T magnetic field
- High segmentation in bending direction
- Tracking within 10 cm of interaction point

- Coverage near midrapidity
- Phi acceptance of 3% per Arm

PHOBOS-Spectra @ 200GeV

- Spectra corrected for
 - Acceptance/Efficiency
 - Ghost Tracks
 - Momentum resolution
 - Variable bin width
 - Secondaries
- At 200 GeV min. bias. pp reference data exists

Comparing Au+Au and pp Spectra 1

- Production of high p_T particles dominated by hard scattering
- High p_T yield prop. to N_{coll} (binary collision scaling)
- Compare to pp spectra scaled up by N_{coll}
- Violation of N_{coll} scaling observed at 130GeV (PHENIX/STAR publications)
- Jet quenching?

Charged Particle Production

Total Multiplicity

ICHEP 2002, Amsterdam

Comparing Au+Au and pp Spectra 2

Scaled Spectra / pp-Fit

Centrality	N _{part}
45-50%	65 ± 4
35-45%	93 ± 5
25-35%	138 ± 6
15-25%	200 ± 8
6-15%	276 ± 9
0-6%	344 ± 12

- Centrality range:
 - from 10 to 3 fm
 - <_v> from 3 to 6

Scaled Spectra / pp-Fit

- Shape differs from pp already at N_{part} = 65
- Moderate change from N_{part} = 65 to N_{part} = 344

Centrality scaling in p_T bins

RHOBOS

N_{part} Scaling at high p_T

\Rightarrow N_{part} scaling describes data at p_T = 4.25 GeV/c

ICHEP 2002, Amsterdam

Evolution with Centrality

- Follow change of shape vs most peripheral bin
- Dominantly participant scaling
- Violated by about 30% for most central collisions

Au+Au/Peripheral Fit

Summary

- Measured h^{+,-} p_T spectra in 200 GeV Au+Au collisions
 - p_T range: 0.2 < p_T < 5 GeV/c
 - Rapidity range: $0.2 < y_{\pi} < 1.4$
 - Centrality range: 65 < N_{part} < 344
- Data show:
 - Substantial difference in spectral shape between pp and peripheral Au+Au (N_{part} ~ 65)
 - Minor change from 65 to 344 participants
 - Even at p_T of 4 5 GeV/c, N_{part} -scaling from peripheral to central Au+Au

ICHEP 2002, Amsterdam

ICHEP 2002, Amsterdam

Comparison to Lower Energies

- Data taken at 130GeV shows similar trends
- Shape is consistent with measurements by STAR

How to compare spectra to pp?

- Observations:
 - Mid-rapidity multiplicity compatible with two component model
 - Total multiplicity shows N_{part} scaling

- How do spectra scale with centrality?
 - Does scaling change over the p_{T} range?
 - Crucial for physics interpretation

Charged Particle Production

Central Density

ICHEP 2002, Amsterdam

Number of collisions at different Energies

ICHEP 2002, Amsterdam

Integrated Yields vs Centrality

Mean p_T vs centrality

ICHEP 2002, Amsterdam

Centrality scaling in p_T bins

ICHEP 2002, Amsterdam

Gerrit van Nieuwennuizen/ivii i

Corrections

Systematic Errors

ICHEP 2002, Amsterdam

Triggering on Interactions

Particle Tracking In Spectrometer

- 1. Road-following algorithm finds straight tracks in field-free region
- 2. The curved tracks in Bfield found by clusters in $(1/p, \theta)$ space
- Find match of straight and curved by θ, consistency in dE/dx and fit in yz-plane
- 4. Covariance matrix track fit for momentum reconstruction and ghost rejection

Spectrometer Performance

Data Sample Production Run 2001(200 GeV)

- 7.8 M Au+Au Events, Min. Bias Trigger
- 32 M reconstructed particles

ICHEP 2002, Amsterdam

