Results from the BRAHMS experiment at RHIC

Dieter Röhrich

Fysisk institutt, Universitetet i Bergen

for the BRAHMS collaboration

- Experimental setup
- Stopping
- Particle production
 - Charged particle pseudo-rapidity distribution
 - Rapidity spectra of identified particles

BRAHMS collaboration

I.G. Bearden⁷, D. Beavis¹, C. Besliu¹⁰, Y. Blyakhman⁶, J.Brzychczyk⁴, B. Budick⁶, H. Bøggild⁷, C. Chasman¹, C. H. Christensen⁷, P. Christiansen⁷, J.Cibor⁴, R.Debbe¹, J. J. Gaardhøje⁷, M. Germinario⁷, K. Grotowski⁴, K. Hagel⁸, O. Hansen⁷, A.K. Holme¹², H. Ito¹¹, E. Jacobsen⁷, A. Jipa¹⁰, J. I. Jordre⁹, F. Jundt², C. E. Jørgensen⁷, T. Keutgen⁹, E. J. Kim⁵, T. Kozik³, T.M.Larsen¹², J. H. Lee¹, Y. K.Lee⁵, G. Løvhøjden¹², Z. Majka³, A. Makeev⁸, B. McBreen¹, M. Murray⁸, J. Natowitz⁸, B.S.Nielsen⁷, K. Olchanski¹, D. Ouerdane⁷, R.Planeta⁴, F. Rami², D. Roehrich⁹, B. H. Samset¹², S. J. Sanders¹¹, I. S. Sgura¹⁰, R.A.Sheetz^{1,} Z.Sosin³, P. Staszel⁷, T.S. Tveter¹², F.Videbæk¹, R. Wada⁸, A.Wieloch³ and Z.B. Yin⁹ ¹Brookhaven National Laboratory, USA ²IReS and Université Louis Pasteur, Strasbourg, France ³Jagiellonian University, Cracow, Poland ⁴Institute of Nuclear Physics, Cracow, Poland ⁵Johns Hopkins University, Baltimore, USA ⁶New York University, USA ⁷Niels Bohr Institute, University of Copenhagen, Denmark ⁸Texas A&M University, College Station, USA ⁹University of Bergen, Norway ¹⁰University of Bucharest, Romania ¹¹University of Kansas, Lawrence, USA 2 ¹²University of Oslo, Norway

BRAHMS detector

Broad RAnge Hadron Magnetic Spectrometer

Determination of Collision Vertex and Centrality

Spectrometer acceptance August 2000 & 2001

Hadron identification

Proton rapidity distribution

- AGS energies
 - Central collisions
 - Energy dependence

B. Back et al., E917 Collaboration, *Phys. Rev. Lett.* **86** (2001) 1970

Net proton rapidity distribution

Net proton rapidity distribution, SPS

G. Cooper et al. (NA49 Collaboration), Nucl. Phys. A661 (1999) 362c-365c

• SPS

 central (6%) Pb+Pb, 158 GeV/nucl.

• NA49

Net protons vs Rapidity

Can we kill models?

Particle production $dN^{ch}/d\eta @ \sqrt{s_{nn}} = 200 \text{ GeV}$

100AGeV+100 AGeV:

- $\int N(ch)d\eta = \frac{4630}{4}$
- Central 0-5% $dN(ch)/d\eta (\eta=0) = 632$
- FWHM of distribution

 $\Delta\eta{=7.5{\pm}0.5}$

Limiting fragmentation

Energy dependence of pion production (1)

Energy dependence of pion production (2)

Antiparticle/particle ratio – rapidity dependence

Thermal models at RHIC

Rapidity distributions

Strangeness : K/π systematics

Summary

- K-/K+, pbar/p ratios fall off with rapidity
- Universal correlation between K-/K+ and pbar/p
- K-/π- decreases from 0.15 (y=0) to 0.1(y=3)
- Measured dN/dy over 3 units of rapidity.
- Dramatic increase in net protons at y=3
- \Rightarrow Low to high chemical potential from y=0 to y=3
- \Rightarrow Net baryon central plateau (y=0 to almost y=2)

Stopping

$dN_{ch}/d\eta$ vs. participant nucleon pairs - energy dependence

• 130 AGeV

- 3900 charged part. observed
- Nch ≈ 23.5 pr. part. pair
- cf. Nch ≈ 17 in p+p at $\sqrt{s=130GeV}$
- 35-40% increase over p+p

• 200 AGeV

- 4900 charged part. observed
- Nch ≈ 30 pr. part. pair
- cf. Nch ≈ 20 in p+p at $\sqrt{s=200 \text{GeV}}$
- 50% increase over p+p