

Some Highlights from the STAR Experimental Program at RHIC

Jim Thomas Lawrence Berkeley National Laboratory for the STAR Collaboration

> ICHEP Amsterdam July 27th, 2002

> > Jim Thomas: 1 The Berkeley Lab

RHIC

- Two independent accelerator rings
- 3.83 km in circumference
- Accelerates everything, from p to Au

	√s	L
р-р	500	10 ³²
Au-Au	200	10 ²⁶
1	GeV	cm ⁻² s ⁻¹

- Polarized protons
- STAR is the Hadronic Signals experiment
- At its heart is a large Time Projection Chamber

The STAR Detector at RHIC

Jim Thomas: 3 The Berkeley Lab

Au on Au Event at CM Energy 130 GeV*A

Data Taken June 25, 2000

Au on Au Event at CM Energy 130 GeV*A

Pictures from Level 3 online display. Data Taken June 25, 2000

central collision \Rightarrow high multiplicity in CTB & low multiplicity in Zcal

Jim Thomas: 6 The Berkeley Lab

What's New? Identified Particle Spectra at 200 GeV

 $Au + Au \rightarrow K^- + X$

π⁺, π⁻, K⁺, K⁻ spectra versus centrality (130 GeV/N data in *nucl-ex/0206008*)

Jim Thomas: 8 The Berkeley Lab

Anti-Particle to Particle Ratios

1.75

1.5

1.25

1

0.75

0.5

0.25

0

Anti-Baryon/Baryon Ratios versus √s_№

AR

In the early universe

- \bar{p}/p ratio = 0.999999

At RHIC, pair-production increases with \sqrt{s}

Mid-rapidity region is not yet yet baryon-free!

$$\frac{Y_{pbar}}{Y_p} = \frac{Y_{pair}}{Y_{pair} + Y_{Trans}} \approx 0.8$$

Pair production is larger than baryon transport

$$\frac{Y_{pair}}{Y_{Tr}} \approx 4$$

80% of protons from pair production

 20% from initial baryon number transported over 5 units of rapidity

Particle Ratios at RHIC

p/p	=	$0.71 \pm 0.02(\text{stat}) \pm 0.05 (\text{sys})$
	=	$0.60 \pm 0.04(\text{stat}) \pm 0.06$ (sys)
	=	$0.64 \pm 0.01(stat) \pm 0.07 (sys)$
	=	$0.64 \pm 0.04(\text{stat}) \pm 0.06$ (sys)
$\overline{\Lambda}/\Lambda$	=	0.73 ± 0.03(stat)
Ξ + /Ξ-	=	$0.83 \pm 0.03(\text{stat.}) \pm 0.05(\text{sys.})$
Κ / π	=	0.15 ± 0.01 (stat) ± 0.02 (sys)
K ⁺ / π ⁺	=	0.16 ± 0.01 (stat) ± 0.02 (sys)
π+/π—	=	1.00 ± 0.01(stat) ± 0.02 (sys)
	=	0.95 ± 0.03(stat) ± 0.05 (sys)

φ/h [−]	= 0.021 ± 0.001 (stat) ± 0.005 (sys)	
Λ/h ⁻	= 0.060 ± 0.001 (stat) ± 0.006 (sys)	
$\overline{\Lambda}$ / h ⁻	= 0.043 ± 0.001 (stat) ± 0.004(sys)	
K ⁰ _s / h ⁻	= 0.124 ± 0.001 (stat)	
$(\overline{K}^{*}+K^{*})/2h^{-} = 0.032 \pm 0.003(\text{stat.}) \pm 0.008 \text{ (sys.)}$		
$2 \phi/(\overline{K}^* + K^*) = 0.64 \pm 0.06 \text{ (stat)} \pm 0.16 \text{ (sys)}$		

Good agreement between the 4 experiments STAR, PHOBOS, PHENIX, BRAHMS

Chemical Freeze-out – from a thermal model

Thermal model fits

Assume:

- Thermally and chemically equilibrated fireball at hadro-chemical freeze-out
- Law of mass action is applicable

Recipe:

- Grand canonical ensemble to describe partition function $\quad \Rightarrow \quad$ density of particles of species ρ_i
- Fixed by constraints: Volume V, strangeness chemical potential $\mu_{\text{S}},$ and isospin

input: measured particle ratios output: temperature T and baryo-chemical potential μ_{B}

We know where we are on the phase diagram but now we want to know what other features are on the diagram

> Jim Thomas: 13 The Berkeley Lab

The Phase Diagram for Nuclear Matter

The goal is to explore nuclear matter under extreme extreme conditions – T > $m_{\pi}c^2$ and ρ > 10 * ρ_0

Jim Thomas: 14 The Berkeley Lab

- Chemical freeze-out (first)
 - End of inelastic interactions
 - Number of each particle species species is frozen
- Useful data
 - Particle ratios

- Kinetic freeze-out (later)
 - End of elastic interactions
 - Particle momenta are frozen
- Useful data
 - Transverse momentum distributions
 - and Effective temperatures

Transverse Flow

Slopes decrease with mass. $<p_T>$ $<p_T>$ and the effective temperature increase with mass.

The transverse radial expansion of the source (flow) adds kinetic energy to the particle distribution. So the classical expression for ${\rm E}_{\rm Tot}$

$$ar{E}=rac{3}{2}T+rac{1}{2}mv^2$$

suggests a linear relationship

$$m{T}_{_{Obs}} = m{T}_{_{KFO}} + m{mass} imes \overline{eta}^{\,2}$$

Jim Thomas: 16 The Berkeley Lab

Kinetic Freezeout from Transverse Flow

Explosive Transverse Expansion at RHIC \Rightarrow High Pressure

Jim Thomas: 17 The Berkeley Lab

Anisotropic (Elliptic) Transverse Flow

p_v

 $\overline{p_x}$

Х

- The overlap region in peripheral collisions is is not symmetric in coordinate space
 - Almond shaped overlap region
 - Easier for particles to emerge in the direction of x-z plane
 - Larger area shines to the side
 - Spatial anisotropy \rightarrow Momentum anisotropy
 - Interactions among constituents generates a pressure gradient which transforms the initial initial spatial anisotropy into the observed momentum anisotropy
- Perform a Fourier decomposition of the momentum space particle distributions in the x-y plane
 - v₂ is the 2nd harmonic Fourier coefficient of the distribution of particles with respect to the reaction plane

$$v_2 = \langle \cos 2\phi \rangle \qquad \phi = \operatorname{atan} \frac{p_y}{p_x}$$

Jim Thomas: 18 The Berkeley Lab

v₂ vs. Centrality

Anisotropic transverse flow is large at RHIC

- v₂ is large
 - 6% in peripheral collisions
 - Smaller for central collisions
- Hydro calculations are in reasonable agreement with the data
 - In contrast to lower collision energies where hydro overpredicts anisotropic flow
 - Anisotropic flow is developed by rescattering
 - Data suggests early time history
 - Quenched at later times

The mass dependence is reproduced by hydrodynamic models

- Hydro assumes local thermal equilibrium
- At early times
- Followed by hydrodynamic expansion

Hydro does a surprisingly good job!

D. Teaney et al., QM2001 Proc. P. Huovinen et al., nucl-th/0104020

> Jim Thomas: 20 The Berkeley Lab

AR

Jim Thomas: 22 The Berkeley Lab

Centrality Dependence of $v_2(p_T)$

- v₂ is saturated at high
 p_T and it does not
 come back down as
 rapidly as expected
- What does v₂ do at very high p_T?

Jim Thomas: 24 The Berkeley Lab

Hard Probes in Heavy-Ion Collisions

- New opportunity using Heavy lons at RHIC → <u>Hard Parton Scattering</u>
 - $-\sqrt{s_{NN}}$ = 200 GeV at RHIC
 - 17 GeV at CERN SPS
- Jets and mini-jets
 - 30-50 % of particle production
 - High p_t leading particles
 - Azimuthal correlations
- Extend into perturbative regime
 - Calculations reliable (?)

- schematic view of jet production hadrons leading particle q q hadrons leading particle Vacuum QGP
- Scattered partons propagate through matter & radiate energy (dE/dx ~ x) in colored medium
 - Interaction of parton with partonic matter
 - Suppression of high p_t particles "jet quenching"
 - Suppression of angular correlations

Scaling pp to AA ... including the Cronin Effect

AR

Inclusive p_T Distribution of Hadrons at 200 GeV

 Scale Au-Au data by the number of binary collisions

 Compare to UA1 pp reference data measured at 200 GeV

Jim Thomas: 28 The Berkeley Lab

Jim Thomas: 29 The Berkeley Lab

Flow vs. Inclusive Hadron Spectra

Identifying jets on a statistical basis in Au-Au

The Berkeley Lab

Peripheral Au+Au data vs. pp+flow

Ansatz:

A high p_T triggered Au+Au event is a superposition of a high p_T triggered p+p event plus anisotropic transverse flow

*v*₂ from reaction plane analysis

"A" is fit in non-jet region (0.75<|∆φ|<2.24)

> Jim Thomas: 33 The Berkeley Lab

 $C_2(Au + Au) = C_2(p + p) + A^*(1 + 2v_2^2 \cos(2\Delta\phi))$

Jim Thomas: 34 The Berkeley Lab

Suppression of back-to-back correlations in central Au+Au collisions

- The backward going jet is missing in central Au-Au collisions when compared to p-p data + flow
- Other features of the data
 - High p_T charged hadrons dominated by jet fragments
 - Relative charge
 - Azimuthal correlation width
 - Evolution of jet cone azimuthal correlation strength with centrality
- Other explanations for the disappearance of back-to-back correlations in central Au-Au?
 - Investigate nuclear k_T effects
 - Experiment: p+Au or d+Au
 - Theory: Add realistic nuclear k_T to the models

Jets at RHIC

Conclusions About Nuclear Matter at RHIC

- Its hot
 - Chemical freeze out at 175 MeV
 - Thermal freeze out at 100 MeV
 - The universal freeze out temperatures are surprisingly flat as a function of \sqrt{s} \sqrt{s}
- Its fast
 - Transverse expansion with an average velocity of 0.55 c
 - Large amounts of anisotropic flow (v_2) suggest hydrodynamic expansion and high pressure at early times in the collision history
- Its opaque
 - Saturation of v_2 at high p_T
 - Suppression of high p_T particle yields relative to p-p
 - Suppression of the away side jet
- And its nearly in thermal equilibrium
 - Excellent fits to particle ratio data with equilibrium thermal models
 - Excellent fits to flow data with hydrodynamic models that assume equilibrated systems

Jim Thomas: 37 The Berkeley Lab

STAR Institutions

U.S. Labs:

Argonne, Brookhaven, and Lawrence Berkeley National Labs

U.S. Universities:

UC Berkeley, UC Davis, UCLA, Carnegie Mellon, Creighton, Indiana, Kent State, Michigan State, CCNY, Ohio State, Penn State, Purdue, Rice, UT Austin, Texas A&M, Washington, Wayne State, Yale

Brazil:

Universidade de Sao Paolo China

IPP - Wuhan, IMP - Lanzhou USTC, SINR, Tsinghua University, IHEP - Beijing

England: University of Birmingham France: **IReS - Strasbourg SUBATECH - Nantes** Germany: **Max Planck Institute - Munich University of Frankfurt** India **Institute of Physics - Bhubaneswar** IIT - Mumbai, VECC - Calcutta Jammu University, Panjab University **University of Rajasthan Poland:** Warsaw University of Technology **Russia**: **MEPHI - Moscow, IHEP - Protvino** LPP & LHE JINR - Dubna

The STAR Collaboration

Jim Thomas: 39 The Berkeley Lab