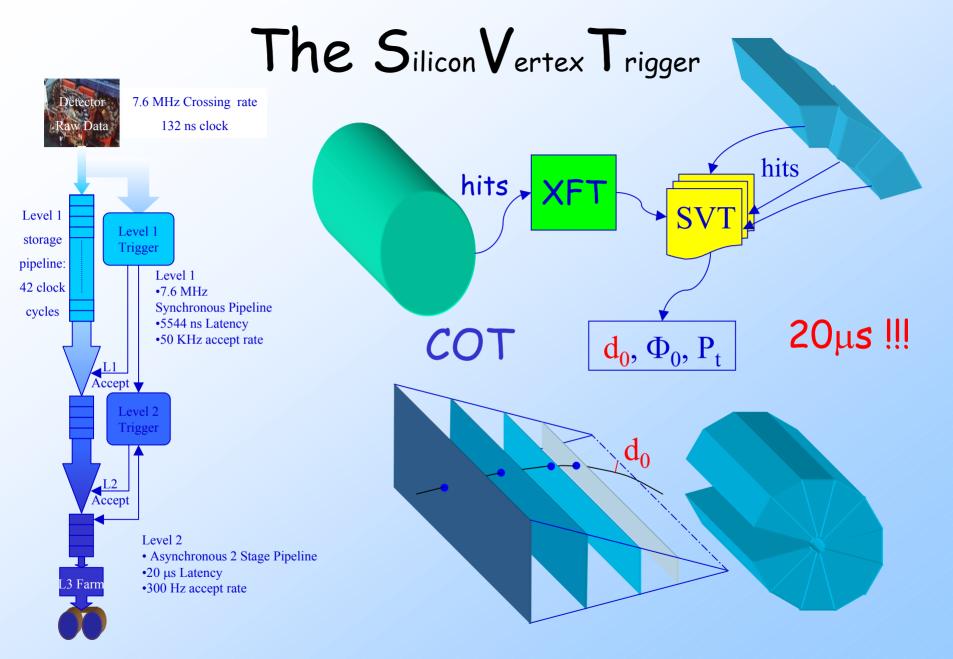







#### Results Using the Silicon


# Vertex Trigger

#### A. Cerri







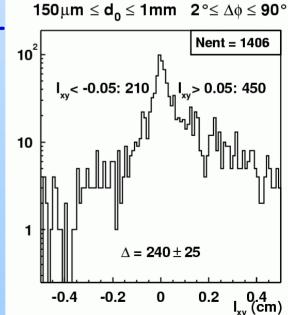


**ICHEP 2002** 

The Two Track Trigger is just a selection based on the SiliconVertexTrigger...

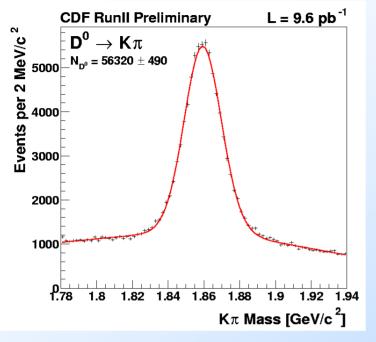
•Why so much emphasis on tracking at trigger level?

•B physics at hadron colliders has two main features:


•Large cross section O(0.1 mb !!!)

❷Huge background O(0.05 b !!!)

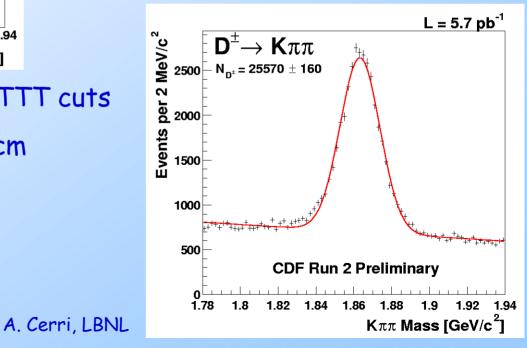
So far CDF has only one cure: require leptons


•There comes the challenge: tracking at trigger level with sufficient resolution!

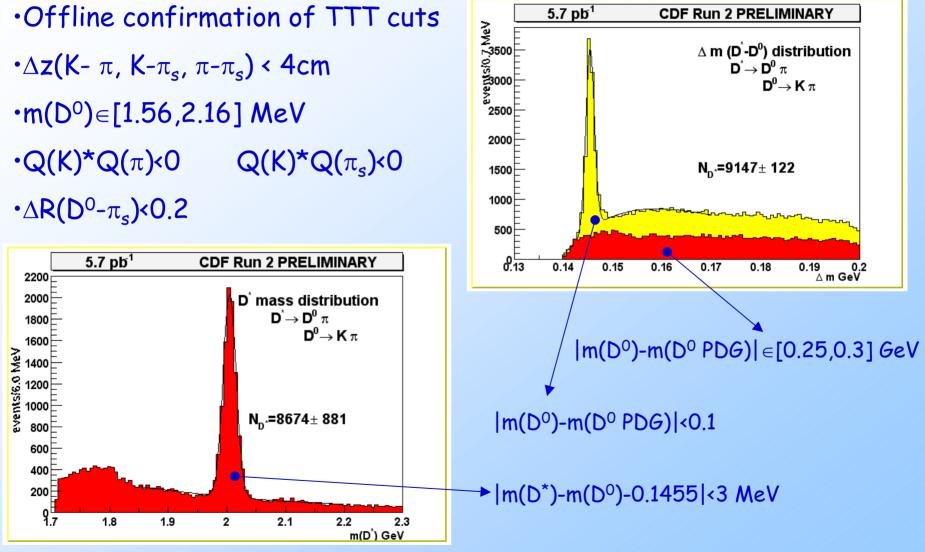
The TTT is the first case in which CDF investigates low Pt B physics without explicitly requiring leptons



ICHEP 2002


# First HF signals...




Offline confirmation of TTT cuts

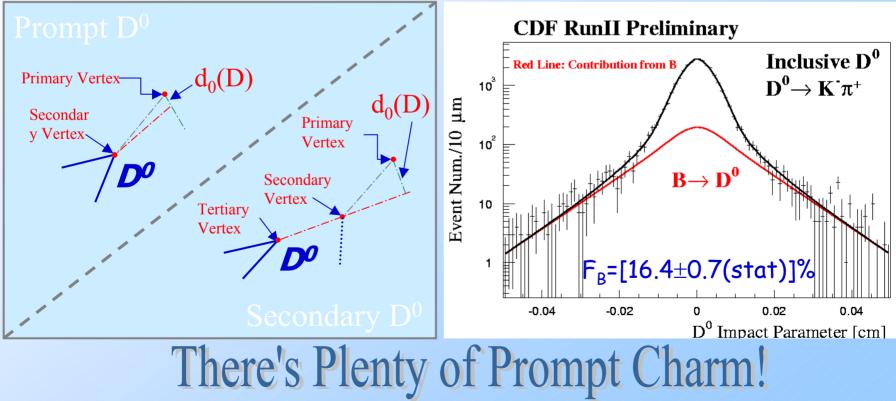
- • $\Delta z(K \pi_1, K \pi_2, \pi_1 \pi_2) < 5cm$
- •L<sub>×y</sub>(D<sup>+</sup>) > 800 um
- •χ²<sub>×y</sub><30

•P<sub>T</sub>(D<sup>+</sup>) > 6 GeV/c ICHEP 2002 •Offline confirmation of TTT cuts • $\Delta z(K-\pi) < 5cm$ • $L_{xy}(D) > 500 \text{ um}$ • $d_0(K)^*d_0(\pi) \le 0$ • $P_T(D) > 5.5 \text{ GeV/c}$ 

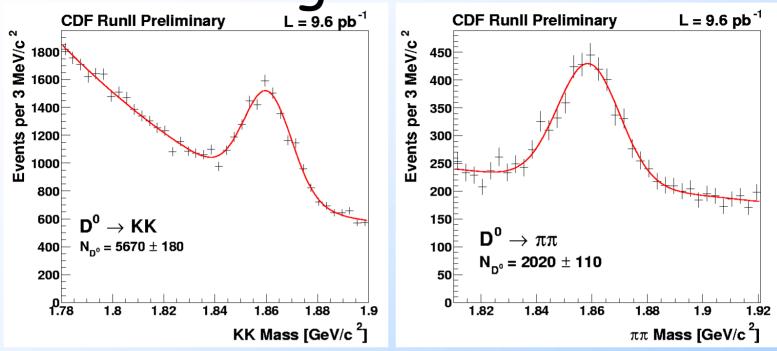


# ...something even cleaner




**ICHEP 2002** 

A. Cerri, LBNL


#### Is the Tevatron/CDF a charm factory?!?? •Get a clean charm sample

•d<sub>0</sub>(D) distributed differently for prompt/non
prompt

•Careful modeling exploiting K<sup>0</sup> and analytic models

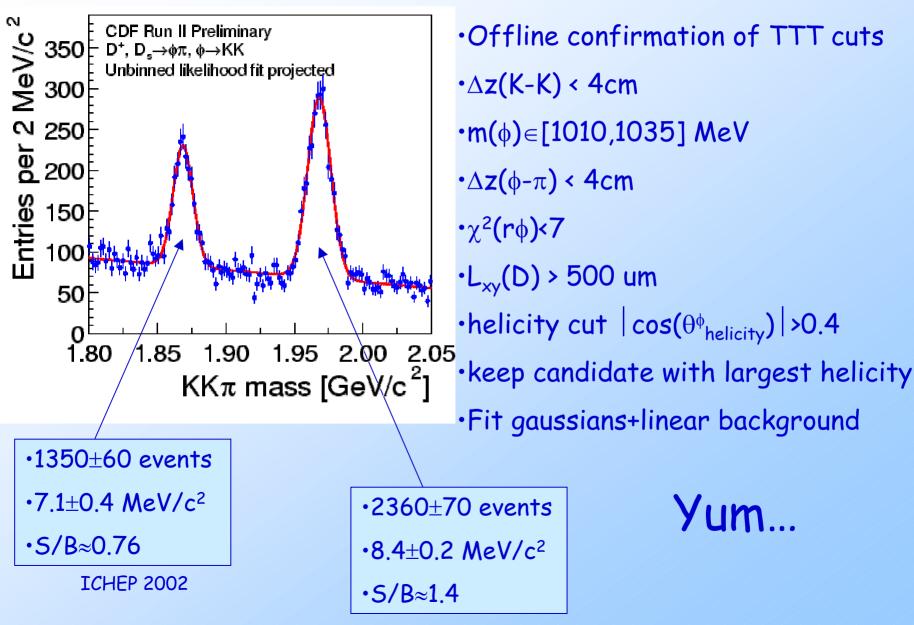


CP eigenstates...



With a selection very close to the  $K\pi$  signal we see

D<sup>o</sup> decays to CP eigenstates, with incredible yields!


$$\Gamma(D^{0} \rightarrow \pi\pi)/\Gamma(D^{0} \rightarrow K\pi)$$
$$\Gamma(D^{0} \rightarrow KK)/\Gamma(D^{0} \rightarrow K\pi)$$

are already accessible with good statistical accuracy and reasonable systematics!!!

#### KK/ $\pi\pi/K\pi$ relative BR

|                                                                                                       |                                                  | <b>ΚΚ/ Κ</b> π | ππ/Κπ       |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------|-------------|
|                                                                                                       | Effect                                           | Syst. Error    | Syst. Error |
| •Is a good benchmark                                                                                  |                                                  | [%]            | [%]         |
|                                                                                                       | Background Model                                 | 7.9            | 1.4         |
| <ul> <li>PDG measurements have errors<br/>close compared to our current</li> </ul>                    | (POLY2, POLY3, EXP)                              |                |             |
|                                                                                                       | Reflected Peak Model                             | 1.3            | 1.3         |
| •                                                                                                     | ( $\sigma$ ratio $\pm 1\sigma$ , free $\sigma$ ) |                |             |
| statistics —                                                                                          | Lifetime Difference                              | 2.2            | 2.2         |
| •Systematics is reasonable<br>because Kπ/ππ/KK share:                                                 | (average from PDG)                               |                |             |
|                                                                                                       | DCS decays                                       | 0.4            | 0.4         |
|                                                                                                       | (from PDG)                                       |                |             |
| <ul> <li>Selection</li> </ul>                                                                         | Tracking                                         | 0.4            | 1.7         |
| •≈Kinematics<br>•Mass                                                                                 | Trigger Simulation                               | 1.9            | 2.5         |
|                                                                                                       | (parametr. Vs GEANT)                             |                |             |
|                                                                                                       | Mean Z (±1.5cm)                                  | 0.7            | 0.5         |
| $\frac{\Gamma(D^0 \to K^+ K^-)}{\Gamma(D^0 \to K\pi)} = [11.18 \pm 0.48(stat) \pm 0.98(syst)]\%$      | <b>Material Description</b>                      | 0.5            | 0.5         |
|                                                                                                       | Input Spectra<br>(realistic Vs flat)             | 1.8            | 1.8         |
| $PDG = [10.83 \pm 0.26]\%$                                                                            | b/c ratio                                        | 1.1            |             |
| $\frac{\Gamma(D^0 \to \pi^+ \pi^-)}{\Gamma(D^0 \to K\pi)} = [3.37 \pm 0.20(stat) \pm 0.16(syst)]\%^-$ |                                                  |                |             |
|                                                                                                       | Total                                            | 8.8            | 4.6         |
| $PDG = [3.76 \pm 0.17]\%$                                                                             |                                                  |                |             |

# And something strange!



| $\Delta m(D^+-I)$ | <b>)</b> <sub>s</sub> ) |
|-------------------|-------------------------|
|-------------------|-------------------------|

•Is a good benchmark

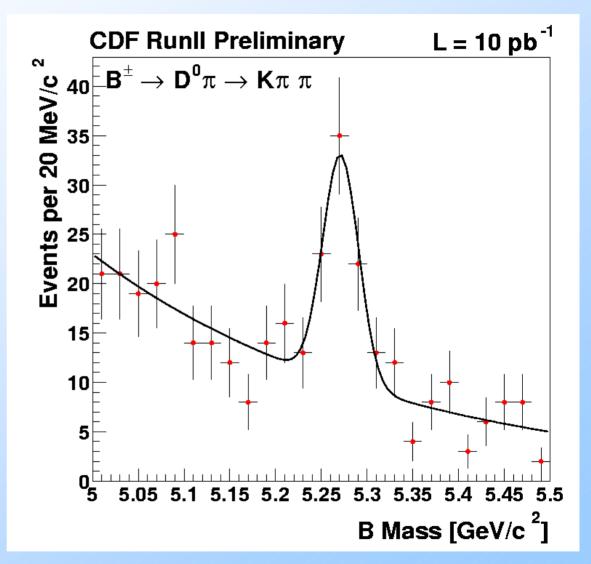
 PDG measurements have errors close compared to our statistics

•Systematics is reasonable because D<sup>+</sup>/D<sub>s</sub> share:

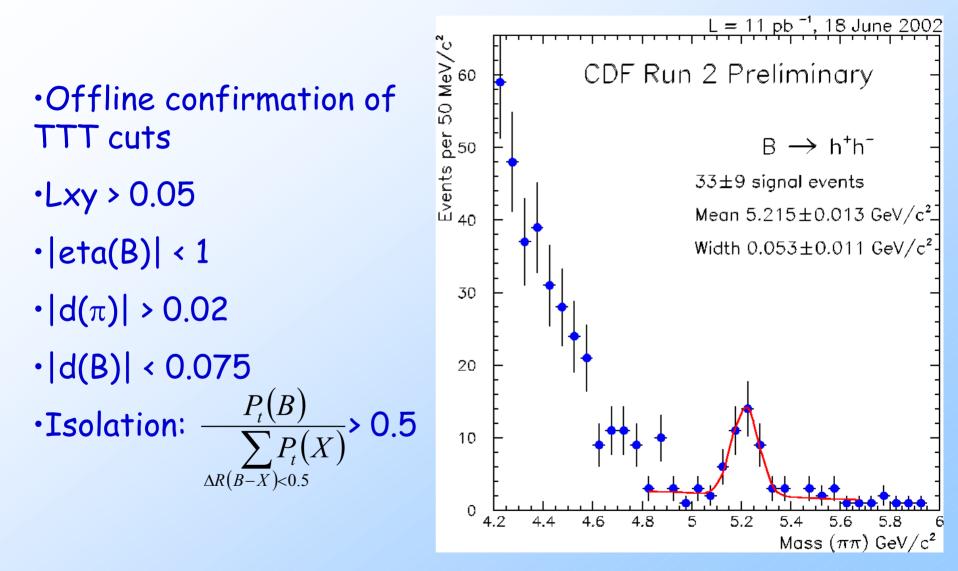
- Selection
- Kinematics
- •≈Mass

| Systematics                     |             |  |  |  |
|---------------------------------|-------------|--|--|--|
| Effect                          | Syst.       |  |  |  |
|                                 | Error       |  |  |  |
|                                 | $[MeV/c^2]$ |  |  |  |
| χ <sup>2</sup> cut (±1)         | 0.06        |  |  |  |
| $L_{xy}$ cut(±100 $\mu$ m)      | 0.09        |  |  |  |
| $Cos(\theta_{hel})$ cut (±0.05) | 0.09        |  |  |  |
| Duplicate removal (on/off)      | 0.04        |  |  |  |
| COT error scale (on/off)        | 0.03        |  |  |  |
| False curv. (on/off)            | 0.055       |  |  |  |
| SVX material (±1 $\sigma$ )     | 0.015       |  |  |  |
| B field (±1σ)                   | 0.025       |  |  |  |
| Background shape<br>(lin/exp)   | 0.22        |  |  |  |
| Fitting range (2x)              | -           |  |  |  |

Kinematics (reweight in Pt) 0.004


Previous PDG average: 99.2±0.5 MeV/c<sup>2</sup>

 $\Delta m = 99.28 \pm 0.43(stat) \pm 0.27(syst) MeV / c^{2}$ 


Total 0.273

### What about Bees? (I)

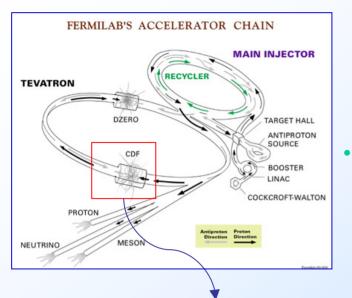
- •Offline confirmation of TTT cuts
- •M(D<sup>0</sup>) within  $4\sigma$
- • $\Delta z$ (tracks) < 5 cm
- •0<L<sub>xy</sub>(D)<4 mm
- · $\Delta \phi$ (D- $\pi$ ) < 2 rad
- $\cdot d(\pi)^* d(D) < 0$
- |d(B)|<100µm
- •P<sub>t</sub>(B)>5.5 GeV



#### What about Bees? (II)

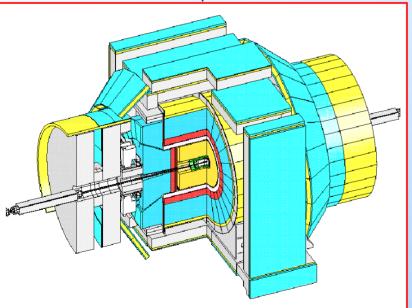


ICHEP 2002


# **Comments on Yields**

- Signals based on  $\approx 10 pb^{-1}$  out of  $2fb^{-1}$  to come...
- The data sample comes from commissioning with:
  - partial Si coverage
  - Non optimized trigger
  - Reliably understand these differences in simulation
- Expect  $\geq x3$  improvement in TTT B physics yields
- Additional improvements in offline efficiency expected

# Conclusions...


- Plenty of Charm!
  - Good benchmark for two body charmless B decays:
    - Energy scale, PID and dE/dx
  - By themselves:
    - Large statistics 🛋 "world class" charm physics:
      - $\Delta m(D_s D^+)$
      - { $\Gamma(DO \rightarrow \pi\pi)$ ,  $\Gamma(DO \rightarrow KK)$ } /  $\Gamma(DO \rightarrow K\pi)$
    - These are good physics benchmarks of what we will be able to do with the full statistics!
- Charmed/uncharmed B are showing up!
  - First observation of fully hadronic B (hh,  $D^0\pi$ )
  - Background rates compatible with predictions
  - Yields fully understood
  - Now the fun begins!!!

## Backup Slides

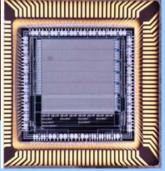


# CDF II

•Renewed detector & Accelerator chain:
 ॐHigher Luminosity ⇒ higher event rate
 →Detector changes/improvements:



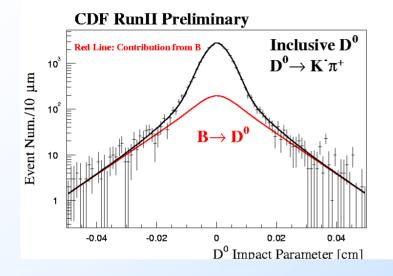
- →DAQ redesign
  →Improved performance:
- Detector Coverage
- >Tracking Quality


#### Two Paths...

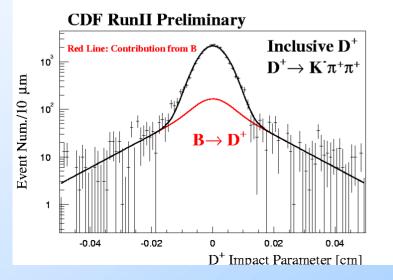
| Pipi                                                    |                      | Ds                                                                | Pi        |  |
|---------------------------------------------------------|----------------------|-------------------------------------------------------------------|-----------|--|
| • L1:                                                   |                      | •L1:                                                              |           |  |
| <ul> <li>Two XFT tracks</li> </ul>                      | 5                    | •Two XFT tracks                                                   |           |  |
| •P <sub>t1</sub> >2 GeV P <sub>t1</sub> +P <sub>t</sub> | ₂ <b>&gt;5.5 GeV</b> | •P <sub>t1</sub> >2 GeV P <sub>t1</sub> +P <sub>t2</sub> >5.5 GeV |           |  |
| •∆ <b></b>                                              | High Mass            | •∆ <b></b>                                                        | Low Mass  |  |
| •L2:                                                    |                      | •L2:                                                              |           |  |
| •d <sub>0</sub> >100 µm for both tracks                 |                      | •d <sub>0</sub> >120 µm for both tracks                           |           |  |
| •Validation of L1 cuts and $\Delta \phi$ >20°           |                      | •Validation of L1 cuts and $\Delta \phi > 2^\circ$                |           |  |
| •P <sub>t</sub> •X <sub>v</sub> >0                      |                      | •P <sub>t</sub> •X <sub>v</sub> >0                                |           |  |
| •d <sub>0</sub> (B)<140 μm                              |                      | •d <sub>0</sub> (B) 140 µm                                        |           |  |
| Two Body                                                |                      |                                                                   | Many Body |  |

#### How does it look like?



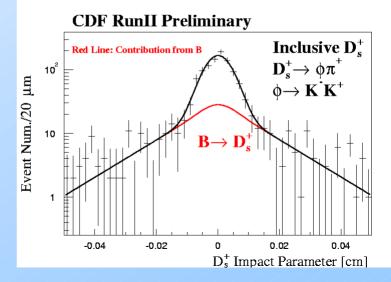

**ICHEP 2002** 




# Prompt fractions...

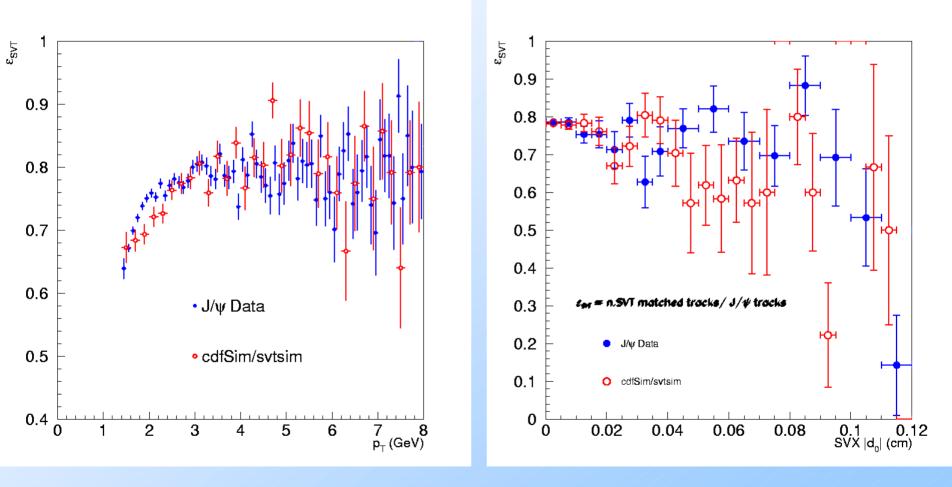
#### [16.4±0.7(stat)]%





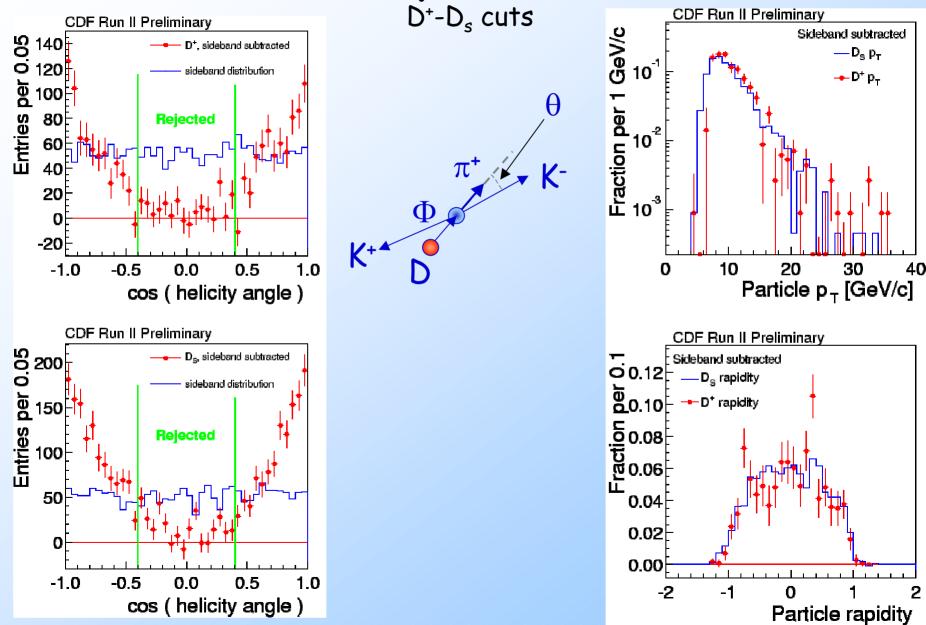

#### [11.3±0.5(stat)]%






#### [34.8±2.8(stat)]%




#### Backup slide I

How well do we know how to model the trigger selection/detector effects?



**ICHEP 2002** 

#### Backup Slide II

