Kristian Harder, DESY Hamburg

b Fragmentation and Energy Correlation in $Z \rightarrow$ bb Decays (LEP-1 and SLD results)

ICHEP Amsterdam, 25 July, 2002

Recent analyses: b fragmentation in e^+e^- reactions at 90 GeV

$\rm B$ hadron energy distribution at 90 GeV, test of hadronisation models

(presentation: first B hadron selection in all analyses, then results)

angle-dependent ${\rm B}\bar{\rm B}$ energy correlation at 90 GeV

SLD SLD abstract 967 (prelim.)

exclusive B meson decays: $B \rightarrow D^{(*)} \ell \nu$

- ℓ : either e or μ
- five $D^{(*)}$ channels: $D^{*+} \rightarrow D^{0}\pi^{+},$ $\downarrow \rightarrow K^{-}\pi^{+}$ $\downarrow \rightarrow K^{-}\pi^{+}\pi^{+}\pi^{-}$ $\downarrow \rightarrow K^{-}\pi^{+}\pi^{0}$ $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$ $D^{0} \rightarrow K^{-}\pi^{+}$
- ν energy := missing energy

B energy resolution: 3-5% \approx 3400 candidates

inclusive B energy reconstruction from vertex flight direction and charged B decay products

Kristian Harder, DESY Hamburg 6

DELPHI, OPAL: inclusive B hadron reconstruction

inclusively identify and reconstruct

B hadrons from

- weak B hadron decay vertices
- $\bullet~$ leptons from weak $\rm B~hadron~decay$
- charged and neutral decay products using Artifical Neural Nets, Likelihoods (OPAL: x_{wd}^{rec} ; DELPHI: x_{wd}^{rec} , x_L^{rec} , z^{rec})
- DELPHI: B energy resolution: $\mathcal{O}(10\%)$ $\approx 230,000$ candidates
- OPAL: B energy resolution: $\mathcal{O}(10\%)$ \approx 270,000 candidates

Comparison of hadronisation models with data

ALEPH, OPAL, SLD:

Monte Carlo simulation with

- fragmentation parameters tuned to other measurements
- different hadronisation models
- full detector simulation

compare x_{wd}^{rec} distribution, fit fragmentation function parameters

DELPHI:

unfold detector effects, fit at generator level (x_{wd}, x_L, z)

under investigation:							
Jetset 7.3/7.4	(parton shower + Lund string model)	\rightarrow next page					
Jetset 7.4	(parton shower + UCLA string model)	(SLD)					
Herwig 5/6	(parton shower + cluster hadronisation)	(OPAL, SLD)					

Fragmentation functions for string hadronisation

Peterson et al.
$$f(z) \propto rac{1}{z(1-rac{1}{z}-rac{arepsilon}{1-z})^2}$$

 \rightarrow Estimate of transition matrix elements by energy difference

Collins/Spiller
$$f(z) \propto (\frac{1-z}{z} + \frac{(2-z)\varepsilon}{1-z})(1+z^2)(1-\frac{1}{z}-\frac{\varepsilon}{1-z})^{-2}$$

 \rightarrow from correspondence to heavy meson structure functions

Kartvelishvili et al. $f(z) \propto z^{lpha}(1-z)$

 \rightarrow from correspondence to different model of heavy meson structure functions

Lund symmetric
$$f(z) \propto rac{1}{z}(1-z)^a \exp(-rac{bm_t^2}{z})$$

 \rightarrow symmetry wrt. start of string hadronisation at either end of the string

Bowler
$$f(z) \propto rac{1}{z^{1+r_bm_t^2}}(1-z)^a \exp(-rac{bm_t^2}{z})$$

 \rightarrow constant probability per length and time for $q\bar{q}$ creation on the string

BCFY
$$f(z) \propto rac{z(1-z)^2}{(1-(1-r)z)^6} \left(3 + \sum_{i=1}^4 (-z)^i f_i(r)
ight)$$

 \rightarrow perturbative ansatz

Results of model tests

Model tests: normalised χ^2 /d.o.f. probabilities

same ranking seen by all experiments! Herwig 5/6: tested by OPAL+SLD, but disfavoured

Model-independent description of B hadron energy spectrum

description of the shape in terms of x_{wd} moments: r^1

$$D_i = \int_0^1 dx \ x^{i-1} D(x)$$

values from <u>*very</u>* preliminary LEP/SLD combination (P. Roudeau, E. Ben Haim):

$$egin{aligned} D_1 &= 1 \; (ext{definition}) \ \langle x_{wd}
angle &= D_2 &= 0.7151 \pm 0.0025 \ D_3 &= 0.5426 \pm 0.0012 \ D_4 &= 0.4268 \pm 0.0010 \ D_5 &= 0.3440 \pm 0.0017 \end{aligned}$$

motivation: for future tests of hadronisation models without redoing analysis higher moments needed for application in hadron collider physics

Overview of $\langle x_{wd} \rangle$ measurements

0.702 ± 0.008

Hadronisation model test in moments space

factorisation theorem \rightarrow moments expressed as $D_i = M_i \times P_i$ P_i : from perturbative calculations M_i : non-perturbative

 \rightarrow can isolate non-perturbative contribution M_i as D_i/P_i

different topic: look at *perturbative* part of fragmentation

Angle-dependent ${\rm B}\bar{\rm B}$ energy correlations

 $\textit{two}\ B$ hadrons in event:

pQCD predicts correlation between B hadron energies and angle

very simple example: presence of hard gluon radiation affects angle and energies!

but: correlation smeared out due to non-perturbative (hadronisation) energy loss

Can one somehow extract the perturbative effects only?

first measurement of angle-dependent $B\bar{B}$ energy correlations

- find two B hadrons in event
- measure 2d fragmentation function D(x₁, x₂, Φ) x₁, x₂: scaled B hadron energies
 Φ: angle between B hadron momenta

• extract perturbative contribution from moments

moments of 'usual' (1d) fragmentation function: $D_i = \int_0^1 dx \; x^{i-1} D(x) = M_i imes P_i$

moments of 2d fragmentation function:

$$D_{ij} = \int_0^1 dx_1 \int_0^1 dx_2 \; x_1^{i-1} x_2^{j-1} D(x_1, x_2, \Phi) = M_i imes M_j imes P_{ij}(\Phi)$$

 \rightarrow can extract $P_{ij}(\Phi)$

normalised double moments P_{ij}/P_{11} : LO pQCD prediction (Burrows, Del Duca, Hoyer) and preliminary SLD measurement

impressive support for factorisation approach! tests specific perturbative calculations constrains Λ_{QCD} (separately for different flavours) \rightarrow to be revisited at a future Linear Collider!

1.0 Cos∳

Summary

- new round of b fragmentation measurements, mostly inclusive
- test of hadronisation models:
 - Jetset/Bowler, Jetset/Lund favoured by data
 - Peterson function too broad
- model-independent description of B hadron energy spectrum:
 - $-\langle x_{wd}
 angle = 0.7151 \pm 0.0025$ (*very* preliminary LEP/SLD combination)
 - higher x_{wd} moments available
- SLD $B\bar{B}$ energy correlation measurement:
 - verification of factorisation and pQCD calculations
 - road towards investigation of more aspects of fragmentation!

Acknowledgements:

T. Boccali, D. Dong, U. Kerzel, D. Muller, G. Nesom, L. Ramler, P. Roudeau

Not mentioned, but not to be forgotten

DELPHI: x-dependence of non-perturbative component SLD: fit of functional forms to x_{wd} distribution ALEPH: $\langle x_L \rangle = 0.7361 \pm 0.0063(stat) \pm 0.0063(syst)$ DELPHI: $\langle x_L \rangle = 0.7346 \pm 0.0008(stat) \pm 0.0055(syst)$ DELPHI: $\langle z \rangle = 0.8872 \pm 0.0012(stat) \pm 0.0054(syst)$

Overview: model test χ^2 /d.o.f.

	ALEPH	DELPHI (prelim.)		OPAL	SLD	
		x_{wd}	x_L	z		
Bowler	_	35/8	43/8	1/2	67/44	17/15
Lund		42/8	53/8	2/2	75/44	17/15
UCLA						27/17
Kartvelishvili et al.	107/94	—	—	36/3	99/45	32/16
Peterson et al.	117/94	287/9	245/9	187/3	159/45	70/16
BCFY						105/16
Collins/Spiller	181/94	—	—	536/3	407/45	142/16
Herwig 6 cldir=1		—	—		540/46	
Herwig 5 cldir=1	—	—	—	—	4279/46	149/17
Herwig 5 cldir=0			—			1015/17

same ranking observed by all experiments!
(fragm. function parameters: rough agreement)