Charm and bottom masses at NNLO from electron-positron annihilation at low energies

J.H. Kühn, M. Steinhauser

I Experimental Results for R below $B\bar{B}$ -Threshold $\Rightarrow \alpha_s$

II Sum Rules to NNLO with Massive Quarks $\Rightarrow m_Q(m_Q)$

III Summary

I Experimental Results for R below $B\bar{B}$ -Threshold $\Rightarrow \alpha_s$

-data

 $-\alpha_s$

Recent "precision" data on R(s)

experiment	energy [GeV]	date	systematic error
BES	2 - 5	2001	4%
MD-1	7.2 - 10.34	1996	4%
CLEO	10.52	1998	2%
PDG	J/ψ		7%
PDG	ψ'		9%
PDG	$\psi^{\prime\prime}$		15%

pQCD and data agree well in the regions 2 - 3.73 GeV and 5 - 10.52 GeV

α_s

pQCD includes full m_Q -dependence up to $\mathcal{O}(\alpha_s^2)$ and terms of $\mathcal{O}(\alpha_s^3(m^2/s)^n)$ with n = 0, 1, 2

can we deduce α_s from the low energy data? **Result:**

BES below 3.73 GeV: $\alpha_s^{(3)}(3 \text{ GeV}) = 0.369^{+0.047+0.123}_{-0.046-0.130}$ BES at 4.8 GeV: $\alpha_s^{(4)}(4.8 \text{ GeV}) = 0.183^{+0.059+0.053}_{-0.064-0.057}$ MD-1: $\alpha_s^{(4)}(8.9 \text{ GeV}) = 0.193^{+0.017+0.127}_{-0.017-0.107}$ CLEO: $\alpha_s^{(4)}(10.52 \text{ GeV}) = 0.186^{+0.008+0.061}_{-0.008-0.057}$

combined, assuming uncorrelated errors: $\alpha_s^{(4)}(5 \text{ GeV}) = 0.235 \pm 0.047$

Evolve up to
$$M_Z$$
: $\alpha_s^{(5)}(M_Z) = 0.124^{+0.011}_{-0.014}$
confirmation of running !
result consistent with LEP, but not competitive
(precision of 0.4% at 3.7 GeV (0.7% at 2 GeV) would be required)

II. Sum Rules to NNLO with Massive Quarks

- $-\operatorname{SVZ}$ Sum Rules, Moments and Tadpoles
- Tadpoles at Three Loop
- Results for Charm and Bottom Masses

SVZ Sum Rules, Moments and Tadpoles

Some definitions

$$R(s) = 12\pi \operatorname{Im} \left[\Pi(q^2 = s + i\epsilon) \right]$$
$$\left(-q^2 g_{\mu\nu} + q_\mu q_\nu \right) \Pi(q^2) \equiv i \int dx \, e^{iqx} \langle T j_\mu(x) j_\nu(0) \rangle$$

with the electromagnetic current j_{μ}

Taylor expansion:
$$\Pi_c(q^2) = Q_c^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n z^n$$

with $z = q^2/(4m_c^2)$ and $m_c = m_c(\mu)$ the $\overline{\text{MS}}$ mass. Coefficients \overline{C}_n up to n = 8 known analytically in order α_s^2 (Chetyrkin, JK, Steinhauser) \overline{C}_n depend on the charm quark mass through

$$\begin{split} l_{m_c} &\equiv \ln(m_c^2(\mu)/\mu^2) \\ \bar{C}_n &= \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \left(\bar{C}_n^{(10)} + \bar{C}_n^{(11)} l_{m_c} \right) \\ &+ \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \left(\bar{C}_n^{(20)} + \bar{C}_n^{(21)} l_{m_c} + \bar{C}_n^{(22)} l_{m_c}^2 \right) \end{split}$$

n	1	2	3	4
$ar{C}_n^{(0)}$	1.0667	0.4571	0.2709	0.1847
$ar{C}_n^{(10)}$	2.5547	1.1096	0.5194	0.2031
$ar{C}_n^{(11)}$	2.1333	1.8286	1.6254	1.4776
$\bar{C}_n^{(20)}$	2.4967	2.7770	1.6388	0.7956
$\bar{C}_n^{(21)}$	3.3130	5.1489	4.7207	3.6440
$\bar{C}_n^{(22)}$	-0.0889	1.7524	3.1831	4.3713

Define the moments

$$\mathcal{M}_{n}^{\text{th}} \equiv \frac{12\pi^{2}}{n!} \left(\frac{\mathrm{d}}{\mathrm{d}q^{2}}\right)^{n} \Pi_{c}(q^{2}) \bigg|_{q^{2}=0} = \frac{9}{4} Q_{c}^{2} \left(\frac{1}{4m_{c}^{2}}\right)^{n} \bar{C}_{n}$$

dispersion relation:

$$\Pi_c(q^2) = \frac{q^2}{12\pi^2} \int \mathrm{d}s \, \frac{R_c(s)}{s(s-q^2)} + \text{subtraction}$$

$$\Rightarrow \mathcal{M}_n^{\exp} = \int \frac{\mathrm{d}s}{s^{n+1}} R_c(s)$$

$$\mathcal{M}_n^{\exp} = \mathcal{M}_n^{\operatorname{th}}$$

 $r > m_c$

SVZ:

 $\Pi^{n}(0)$ can be reliably calculated in pQCD: low n:

- fixed order in α_s is sufficient, in particular no resummation of 1/v - terms from higher orders required
- condensates are unimportant
- pQCD in terms of short distance mass : $m_c(3 \text{ GeV}) \Rightarrow m_c(m_c)$ stable expansion : no pole mass or closely related definition (1S-mass, potential-subtracted mass) involved
- moments available in NNLO

Tadpoles in NNLO

all three-loop – one-scale tadpole amplitudes can be calculated with "arbitrary" power of propagators (Broadhurst; Chetyrkin, JK, Steinhauser); FORM-program MATAD (Steinhauser)

Three-loop diagrams contributing to $\Pi_l^{(2)}$ (inner quark massless) and $\Pi_F^{(2)}$ (both quarks with mass m).

Purely gluonic contribution to $\mathcal{O}(\alpha_s^2)$

Results

input for R(s)

- resonances $(J/\psi, \psi', \psi'')$
- continuum below 4.8 GeV (BES)
- continuum above 4.8 GeV (theory)

experimental error of the moments dominated by resonances

\overline{n}	1	2	3	4
$m_c(3 \text{ GeV})$	1.027(30)	0.994(37)	0.961(59)	0.997(67)
$m_c(m_c)$	1.304(27)	1.274(34)	1.244(54)	1.277(62)

error in m_c dominated by experiment for n=1, by theory (variation of μ , α_s) for n = 3, 4, ...

stability: compare LO, NLO, NNLO r clear improvement

 $m_c(m_c)$ for n = 1, 2, 3, 4 in LO, NLO, NNLO.

FINAL RESULT: $m_c(m_c) = 1.304(27)$ GeV

convertion to pole mass (drastic shift from NLO to NNLO!):

$$M_c^{(2-\text{loop})} = 1.514(34) \text{ GeV}$$

 $M_c^{(3-\text{loop})} = 1.691(35) \text{ GeV}$

 $\overline{\text{MS}}$ -mass more stable

other results from sum rules:

 $1.23\pm0.09~{\rm GeV}$ Eidemüller, Jamin

 $1.37\pm0.09~{\rm GeV}$ Penarrocha, Schilcher

 $1.10\pm0.04~{\rm GeV}$ Narison

 $1.275\pm0.015~{\rm GeV}$ Ioffe, Zyablyuk

results from lattice simulations:

 $1.26(4)(12)~{\rm GeV}$ Becirevic, Lubicz, Martinelli

1.314(40)(20)(7) GeV Rolf, Sint

effect of "perturbative quenching": ± 30 MeV !

Similar analysis for the **bottom quark :**

resonances include $\Upsilon(1)$ up to $\Upsilon(6)$, "continuum" starts at 11.2 GeV

 $m_b(m_b)$ for n = 1, 2, 3 and 4 in LO, NLO and NNLO

RESULT

n	1	2	3	4
$m_b(10 \text{ GeV})$	3.665(60)	3.651(52)	3.641(48)	3.655(77)
$m_b(m_b)$	4.205(58)	4.191(51)	4.181(47)	4.195(75)

 $m_b(m_b) = 4.19(5) \text{ GeV}$

corresponds to a pole mass of

$$M_b^{(2-\text{loop})} = 4.63(6) \text{ GeV}$$

 $M_b^{(3-\text{loop})} = 4.80(6) \text{ GeV}$

consistent with analysis of bottonium through moments with large n

 \bullet direct determination of $m_{\rm pole}$ less stable !

III SUMMARY

$$\alpha_s^{(4)}(5 \text{ GeV}) = 0.235 \pm 0.047$$

$$\Rightarrow \alpha_s^{(5)}(M_Z) = 0.124^{+0.011}_{-0.014}$$

 \rightleftharpoons drastic improvement in δm_c and δm_b from moments with low n in NNLO

 \vartriangleleft direct determination of short-distance mass

 $m_c(m_c) = 1.304(27) \text{ GeV}$ $m_b(m_b) = 4.19(5) \text{ GeV}$

improved measurements of the cross section in the charm region $(J/\psi$!) would help