Inclusive B Decays - Spectra, Moments and CKM Matrix Elements

Presented by
Daniel Cronin-Hennessy
University of Rochester
(CLEO Collaboration)

ICHEP July 2002 Amsterdam, Ne

Outline

- Motivation for measuring moments of various spectra.
- ❖ Moments Measurements and | V_{cb} |
 - \triangleright \mathbf{E}_{γ} spectrum in inclusive decays $\mathbf{B} \rightarrow X_s \gamma$
 - $ightharpoonup M_X^2$ spectrum in inclusive decays $B \to X_c \ell v$
 - $ightharpoonup E_{\ell}$ spectrum in inclusive decays $B \to X_c \ell v$
- Moments Summary
- ***** Extraction of $|V_{ub}|$
 - ightarrow More from E_{γ} spectrum and lepton energy endpoint ($|V_{ub}|$)
 - $\triangleright |V_{ub}| \text{ from } B \rightarrow \pi \ell v$
 - \triangleright Using more than one kinematic variable at a time ($B \rightarrow X \ell v$).
- Summary

Motivation

HQET+OPE allows any inclusive observable to be written as a double expansion in powers of α_s and $1/M_B$:

Observable= $A(\alpha_s, \beta_o \alpha_s^2) + B(\alpha_s)\Lambda/M + C\lambda_1/M^2 + D\lambda_2/M^2 + E\Lambda^2/M^2 + O(1/M^3)$

O(1/M): $\overline{\Lambda}$ energy of light degrees of freedom

O(1/M²) λ_1 - kinetic energy squared of b quark hyperfine splitting (known from B/B* and D/D* Δ M)

O(1/M³) $\rho_1, \rho_2, \tau_1, \tau_2, \tau_3, \tau_4$ ~(.5 GeV)³ from dimensional considerations

- $\Gamma_{sl} = |V_{cb}|^2 \left(A(\alpha_{s,\prime}\beta_o\alpha_s^2) + B(\alpha_s)\overline{\Lambda}/M_B + C\lambda_1/M_B^2 + ... \right)$
- Measurement of 1 observable gives a band in $\Lambda \lambda_1$ space. Measurement of 2 gives an intersection and (Λ, λ_1)
- \rightarrow Λ , λ_1 combined with the $\Gamma_{\rm sl}$ measurements => better $\|\mathbf{V}_{\rm cb}\|^2$
- > **ISSUES:** assumption of quark-hadron duality, scheme dependence, size of higher order terms.

Hadronic Mass and Photon Energy

PRL 87 251807 '01 PRL 87 251808 '01

 M_v^2 (GeV²)

In MS scheme, at order $1/M_B^3$ and $\alpha_s^2\beta_o$

$$\Lambda$$
= 0.35 \pm 0.07 \pm 0.10 GeV
 λ_1 = -.236 \pm 0.071 \pm 0.078 GeV²

$$|V_{cb}| = (4.04 \pm 0.09 \pm 0.05 \pm 0.08) \ 10^{-2}$$
 Γ_{sl}
 Λ , λ_1 Theory

4

Lepton Energy Moments (CLEO Preliminary)

Unfolded Lepton Energy Spectrum for leptons from $B \to X \ell v$

$$R_{0} = \frac{\int_{1.7} \frac{d\Gamma_{sl}}{dE_{l}} dE_{l}}{\int_{1.5} \frac{d\Gamma_{sl}}{dE_{l}} dE_{l}}$$

$$M. Gremm, A. Kapustin, Z. Ligeti M. Wise, I. Stewart$$

$$R_{1} = \frac{\int_{1.5} E_{l} \frac{d\Gamma_{sl}}{dE_{l}} dE_{l}}{\int_{1.5} \frac{d\Gamma_{sl}}{dE_{l}} dE_{l}}$$

$$R_0 = 0.6187 + 0.0014 + 0.0016$$

$$R_1 = 1.7810 + 0.0007 + 0.0009 \text{ GeV}$$

CLEO CONF 02-10 ICHEP02 ABS932

Consistency Among Observables

- Λ and $λ_1$ ellipse extracted from 1st moment of $B → X_s γ$ photon energy spectrum and 1st moment of hadronic mass² distribution($B → X_c ℓν$). We use the HQET equations in MS scheme at order $1/M_B^3$ and $α_s^2 β_o$.
 - MS Expressions: A. Falk, M. Luke, M. Savage,
 Z. Ligeti, A. Manohar, M. Wise, C. Bauer
- The red and black curves are derived from the new CLEO results for $B \to X \ell \nu$ lepton energy moments.
 - * MS Expressions: M.Gremm, A. Kapustin, Z. Ligeti and M. Wise, I. Stewart (moments) and I. Bigi, N.Uraltsev, A. Vainshtein(width)
 - Gray band represents total uncertainty for the 2nd moment of photon energy spectrum.

Consistency Across Schemes- 1S Mass v. MS

 $\stackrel{\bullet}{\bullet} \Lambda$ and λ_1 ellipse extracted from $1^{\rm st}$ moment of $B \rightarrow X_s \gamma$ photon energy spectrum and $1^{\rm st}$ moment of hadronic mass² distribution $(B \rightarrow X_c \ \ell \nu)$. We use the HQET equations in 1S scheme at order $1/M_B^3$ and $\alpha_s^2 \beta_o$.

1S Expressions(recent): *C. Bauer, M. Trott (hep-ph/0205039) C. Bauer, A. Manohar, Z.Ligeti and M. Luke private communication*

In 1S mass scheme, at order $1/M_B^3$ and $\alpha_s^2\beta_o$

$$|V_{cb}| = (4.05 \pm 0.09 \pm 0.04 \pm 0.10) \ 10^{-2}$$

(recall MS: $|V_{cb}| = (4.04 \pm 0.09 \pm 0.05 \pm 0.08) \times 10^{-2}$)

Moments Summary

- CLEO has measured six moments, two each from 1) the photon energy distribution in $B \to X_c \gamma$ events 2) the hadronic mass2 distribution in $B \to X_c \ell \nu$ events and 3) most recently the lepton energy spectrum in $B \to X_c \ell \nu$ events.
- The allowed values for HQET parameters Λ and λ_1 are in agreement for all measurements.
- Additionally, CLEO has used the HQET expressions from the 1S mass renormalization scheme and has extracted a value of |V_{cb}| in excellent agreement with that derived from the MS scheme.
- There remains some ambiguity on the treatment of uncertainties due to the higher order HQET terms.

$|V_{ub}|$ from Lepton Endpoint (using $b \rightarrow s\gamma$)

- \triangleright |V_{ub}| from $b \rightarrow u \ell v$
 - We measure the endpoint yield
 - Large extrapolation to obtain | V_{ub} |
 - High E cut leads to theoretical difficulties (we probe the part of spectrum most influenced by fermi momentum)
- **GOAL**: Use $b \rightarrow s\gamma$ to understand Fermi momentum and apply to $b \rightarrow u \ell v$ for improved measurement of $|V_{ub}|$

Kagan-Neubert DeFazio-Neubert

B \rightarrow lightquark shape function, SAME (to lowest order in Λ_{QCD}/m_b) for $b \rightarrow s \gamma \Rightarrow B \rightarrow X_s \gamma$ and $b \rightarrow u \ell v \Rightarrow B \rightarrow X_u \ell v$.

Convolute with light cone shape function.

Fraction of $b \rightarrow u \ell v$ spectrum above 2.2 is

$$0.13 \pm 0.03$$

$|V_{ub}|$ from Lepton Endpoint (using $b \rightarrow s\gamma$)

$$|Vub| = (4.08 \pm 0.34 \pm 0.44 \pm 0.16 \pm 0.24)10-3$$

The 1st two errors are from experiment and 2nd from theory

- Subleading corrections large
 - C. Bauer, M. Luke, T. Mannel A. Leibovich, Z. Ligeti, M. Wise
- Method for partial inclusion of subleading corrections:

$|V_{ub}|$ from $\mathbf{B}(B \to \pi \ell \nu)$ with Reduced Model Dependence

- Use missing four-momentum in full B reconstruction.
- Sample of 9.7 M BB pairs.
- Lower lepton momentum cut than in previous CLEO analysis
- $B \rightarrow (\pi^+, \pi^0, \rho^+, \rho^0, \omega \eta) \ell \nu$
- ❖ Sample size allows parsing into 3 bins of q² (reduces dependence on modeling of q² shape)

CLEO CONF 02-09 ICHP02 ABS931

Branching fractions in restricted q² bins

- Three $b \rightarrow u\ell v$ models of q^2 distribution.
- Averaging detection efficiency over smaller q² range => smaller variation in fits to width.
- Shown are the best fits to $d\Gamma/dq^2$ for SPD, Ball'01 & ISGW2

$|V_{ub}|$ from $\mathcal{B}(B \to \pi \ell \nu)$ with Reduced Model Dependence

$$\mathcal{B}(B \to \pi \ell \nu) = (1.376 \pm 0.180^{+0.116}_{-0.135} \pm 0.008 \pm 0.102 \pm 0.021)10^{-4}$$

$$stat \quad syst \quad ff\pi, \qquad ff\rho \qquad model$$

$$|V_{ub}| = (3.32 \pm 0.21^{+0.17}_{-0.19} \, ^{+0.55}_{-0.39} \, \pm 0.12 \pm 0.07)10^{-3}$$
Preliminary

$B \rightarrow X \ell_V$ with Neutrino Reconstruction

- ❖Neutrino four-momentum inferred from hermeticity of detector.
- Maximum likelihood fit over full three dimensional decay distribution
- **♦** Contributions from $B \to X_c \ell \nu$ (D,D*,D**and NR) and $B \to X_u \ell \nu$.

$$|V_{ub}| = (4.05 \pm 0.18 \pm 0.58 \pm 0.25 \pm 0.21 \pm 0.56) \ 10^{-3}$$

Preliminary stat syst b->c b->u theory model model

CLEO CONF 02-09 ICHP02 ABS933

<u>Summary</u>

```
Endpoint |V_{ub}| = (4.08 \pm 0.63) 10<sup>-3</sup> B \rightarrow \pi \ell \nu |V_{ub}| = (3.32 \pm 0.63) 10<sup>-3</sup> 3-D LL Fit |V_{ub}| = (4.05 \pm 0.89) 10<sup>-3</sup>
```

- CLEO has measured the yield of $B \to X_u \ell v$ above the lepton energy endpoint of $B \to X_c \ell v$. The total rate is extrapolated by using our well measured photon energy spectrum in $b \to s \gamma$. $|V_{ub}|$ is extracted from the total rate. Additional subleading corrections to the shape function are currently being investigated.
- CLEO presented an updated $B \to \pi \ell \nu$ Branching ratio and a new (exclusive) extraction of $|V_{ub}|$.
- CLEO has also performed a log-likelihood fit to $B \to X \ell v$ in three independent kinematic variables. A preliminary value of $|V_{ub}|$ was presented. The weight in the fit of events near the endpoint is not fully understood do not average the inclusive results.

Backup I

