Inclusive B Decays - Spectra, Moments and
 CKM Matrix Elements

Presented by
Daniel Cronin-Hennessy
University of Rochester
(CLEO Collaboration)

ICHEP July 2002
Amsterdam, Ne

Outline

* Motivation for measuring moments of various spectra.
* Moments Measurements and \| $\mathbf{V}_{\mathrm{cb}} \|$
$>\mathbf{E}_{\gamma}$ spectrum in inclusive decays $B \rightarrow X_{s} \gamma$
$>\mathrm{M}_{\mathrm{X}}{ }^{2}$ spectrum in inclusive decays $B \rightarrow X_{c} \ell v$
$>\mathrm{E}_{\ell}$ spectrum in inclusive decays $B \rightarrow X_{c} \ell v$
* Moments Summary
* Extraction of | $\mathrm{V}_{\mathrm{ub}} \|$
$>$ More from \mathbf{E}_{γ} spectrum and lepton energy endpoint $\left(\left|V_{u b}\right|\right)$
$>\mid \mathbf{V}_{\mathrm{ub}} \|$ from $B \rightarrow \pi \ell v$
$>$ Using more than one kinematic variable at a time $(B \rightarrow X \ell v)$.
* Summary

Motivation

- HQET+OPE allows any inclusive observable to be written as a double expansion in powers of α_{s} and $1 / M_{B}$:

Observable $=A\left(\alpha_{s,}, \beta_{0} \alpha_{s}{ }^{2}\right)+B\left(\alpha_{s}\right) \bar{\Lambda} / M+C \lambda_{1} / M^{2}+D \lambda_{2} / M^{2}+E \bar{\Lambda}^{2} / M 2+O\left(1 / M^{3}\right)$
$\mathrm{O}(1 / \mathrm{M}): \bar{\Lambda} \quad$ energy of light degrees of freedom
$\mathrm{O}\left(1 / \mathrm{M}^{2}\right) \lambda_{1} \quad$ - kinetic energy squared of b quark
$\lambda_{2} \quad$ hyperfine splitting (known from B / B^{*} and $D / D^{*} \Delta M$)
$\mathrm{O}\left(1 / \mathrm{M}^{3}\right) \rho_{1}, \rho_{2}, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4} \sim(.5 \mathrm{GeV})^{3}$ from dimensional considerations
$>\Gamma_{\mathrm{sl}}=\left|\mathbf{V}_{\mathrm{cb}}\right|^{2}\left(\mathrm{~A}\left(\alpha_{\mathrm{s},}, \beta_{\mathrm{o}} \alpha_{\mathrm{s}}^{2}\right)+\mathrm{B}\left(\alpha_{\mathrm{s}}\right) \bar{\Lambda} / \mathrm{M}_{\mathrm{B}}+\mathrm{C} \lambda_{1} / \mathrm{M}_{\mathrm{B}}^{2}+\ldots\right)$
$>$ Measurement of 1 observable gives a band in $\bar{\Lambda}-\lambda_{1}$ space. Measurement of 2 gives an intersection and ($\bar{\Lambda}, \lambda_{1}$)
$>\bar{\Lambda}, \lambda_{1}$ combined with the Γ_{sl} measurements $=>$ better $\left|\mathbf{V}_{\mathrm{cb}}\right|^{2}$
> ISSUES: assumption of quark-hadron duality, scheme dependence, size of higher order terms.

Hadronic Mass and Photon Energy

In $\overline{M S}$ scheme, at order $1 / M_{B}{ }^{3}$ and $\alpha_{s}^{2} \beta_{0}$

$$
\begin{aligned}
& \bar{\Lambda}=0.35 \pm 0.07 \pm 0.10 \mathrm{GeV} \\
& \lambda_{1}=-.236 \pm 0.071 \pm 0.078 \mathrm{GeV}^{2} \\
& \left|\mathrm{~V}_{\mathrm{cb}}\right|=(4.04 \pm 0.09 \pm 0.05 \pm 0.08) 10^{-2} \\
& \uparrow \\
& \Gamma_{\mathrm{sl}} \quad \bar{\Lambda}, \lambda_{1} \quad \text { Theory }
\end{aligned}
$$

Lepton Energy Moments (CLEO Preliminary)

Consistency Among Observables

* $\quad \Lambda$ and λ_{1} ellipse extracted from $1^{\text {st }}$ moment of $\boldsymbol{B} \rightarrow \boldsymbol{X}_{\mathrm{s}} \gamma$ photon energy spectrum and $1^{\text {st }}$ moment of hadronic mass ${ }^{2}$ distribution $\left(\boldsymbol{B} \rightarrow \boldsymbol{X}_{c} \ell v\right)$. We use the HQET equations in MS scheme at order $1 / M_{B}{ }^{3}$ and $\alpha_{s}{ }^{2} \beta_{0}$.
* MS Expressions: A. Falk, M. Luke, M. Savage,
Z. Ligeti, A. Manohar, M. Wise, C. Bauer
* The red and black curves are derived from the new CLEO results for $\boldsymbol{B} \rightarrow \boldsymbol{X} \ell v$ lepton energy moments.
* MS Expressions: M.Gremm, A. Kapustin, Z. Ligeti and M. Wise, I. Stewart (moments) and I. Bigi, N.Uraltsev, A. Vainshtein(width)

Gray band represents total uncertainty for the $2^{\text {nd }}$ moment of photon energy spectrum.

Consistency Across Schemes- 1S Mass v. MS

\star and λ_{1} ellipse extracted from $1^{\text {st }}$ moment of $\boldsymbol{B} \rightarrow \boldsymbol{X}_{s} \gamma$ photon energy spectrum and $1^{\text {st }}$ moment of hadronic mass ${ }^{2}$ distribution $\left(\boldsymbol{B} \rightarrow \boldsymbol{X}_{\boldsymbol{c}} \ell v\right)$. We use the HQET equations in $1 S$ scheme at order $1 / M_{B}{ }^{3}$ and $\alpha_{s}{ }^{2} \beta_{0}$.

1S Expressions(recent): C. Bauer, M. Trott (hepph/0205039) C. Bauer, A. Manohar, Z.Ligeti and M. Luke private communication

In 1 S mass scheme, at order $1 / \mathrm{M}_{\mathrm{B}}{ }^{3}$ and $\alpha_{s}^{2} \beta_{0}$
$\left|\mathrm{V}_{\mathrm{cb}}\right|=(4.05 \pm 0.09 \pm 0.04 \pm 0.10) 10^{-2}$
(recall $\overline{\mathrm{MS}}:\left|\mathrm{V}_{\mathrm{cb}}\right|=(4.04 \pm 0.09 \pm 0.05 \pm 0.08) 10^{-2}$)

Moments Summary

> CLEO has measured six moments, two each from 1) the photon energy distribution in $B \rightarrow X$ y events 2) the hadronic mass2 distribution in $B \rightarrow X_{c} \ell_{\nu}$ events and 3) most recently the lepton energy spectrum in $B \rightarrow X_{c} \ell v$ events.
$>$ The allowed values for HQET parameters Λ and λ_{1} are in agreement for all measurements.
> Additionally, CLEO has used the HQET expressions from the 1 S mass renormalization scheme and has extracted a value of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ in excellent agreement with that derived from the $\overline{M S}$ scheme.
> There remains some ambiguity on the treatment of uncertainties due to the higher order HQET terms.

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ from Lepton Endpoint (using $b \rightarrow s \gamma$)

$>\left|\mathrm{V}_{\mathrm{ub}}\right|$ from $b \rightarrow u \ell v$

- We measure the endpoint yield
- Large extrapolation to obtain $\left|\mathrm{V}_{\mathrm{ub}}\right|$
- High E cut leads to theoretical difficulties (we probe the part of spectrum most influenced by fermi momentum)
> GOAL: Use $b \rightarrow s \gamma$ to
understand Fermi momentum
 and apply to $b \rightarrow u \ell v$ for improved measurement of $\left|\mathrm{V}_{\mathrm{ub}}\right|$

Kagan-Neubert
DeFazio-Neubert
$\mathrm{B} \rightarrow$ lightquark shape function, SAME (to lowest order in $\Lambda_{\mathrm{QCD}} / \mathrm{m}_{b}$) for $b \rightarrow s \gamma \Rightarrow \mathrm{~B} \rightarrow \mathrm{X}_{s} \gamma$ and $b \rightarrow u l v \Rightarrow \mathrm{~B} \rightarrow \mathrm{X}_{u} \ell v$.

Convolute with light cone shape function.

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ from Lepton Endpoint (using $b \rightarrow s \gamma$)

$$
|V u b|=(4.08 \pm 0.34 \pm 0.44 \pm 0.16 \pm 0.24) 10-3
$$

The $1^{\text {st }}$ two errors are from experiment and $2^{\text {nd }}$ from theory

PRL 88231803 `02
> Subleading corrections large
C. Bauer, M. Luke, T. Mannel
A. Leibovich, Z. Ligeti, M. Wise
> Method for partial inclusion of subleading corrections:
$\underbrace{2.2}_{2}$

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ from $\mathbf{B}\left(B \rightarrow \pi \mathrm{v}_{\mathrm{v}}\right)$ with Reduced Model Dependence

* Use missing four-momentum in full B reconstruction.
* Sample of 9.7 M BB pairs.
* Lower lepton momentum cut than in previous CLEO analysis
* $B \rightarrow\left(\pi^{+}, \pi^{0}, \rho^{+}, \rho^{\circ}, \omega \eta\right) l v$
* Sample size allows parsing into 3 bins of q^{2} (reduces dependence on modeling of q^{2} shape)

CLEO CONF 02-09
ICHP02 ABS931

Branching fractions in restricted q^{2} bins

$>$ Three $b \rightarrow u \ell v$ models of q^{2} distribution.
$>$ Averaging detection efficiency over smaller q^{2} range => smaller variation in fits to width.
$>$ Shown are the best fits to $d \Gamma / d q^{2}$ for SPD, Bal/'O1 \& ISGW2

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ from $\mathscr{\mathscr { B }}(B \rightarrow \pi \mathscr{l})$ with Reduced Model Dependence

$$
\begin{gathered}
\mathscr{B}(B \rightarrow \pi \ell v)=\left(\mathbf{1 . 3 7 6} \pm \mathbf{0 . 1 8 0} 0_{-0.135}^{+0.116} \pm \mathbf{0 . 0 0 8} \pm \mathbf{0 . 1 0 2} \pm \mathbf{0 . 0 2 1}\right) \mathbf{1 0} \mathbf{0}^{-\mathbf{4}} \\
\text { stat syst ffr, ff } \quad \text { model } \\
\left|\mathrm{V}_{\mathrm{ub}}\right|=\left(\mathbf{3 . 3 2} \pm \mathbf{0 . 2 1} \mathbf{1}_{-0.19}^{+0.17} \quad \underset{-0.39}{+0.55} \pm \mathbf{0 . 1 2} \pm \mathbf{0 . 0 7}\right) \mathbf{1 0} \mathbf{0}^{-3}
\end{gathered}
$$

Preliminary

$B \rightarrow X \ell v$ with Neutrino Reconstruction

*Neutrino four-momentum inferred from hermeticity of detector.
\star Maximum likelihood fit over full three dimensional decay distribution
\star Contributions from $B \rightarrow X_{c} \ell v\left(\mathrm{D}, \mathrm{D}^{*}, \mathrm{D}^{* *}\right.$ and NR) and $B \rightarrow X_{u} \ell v$.

$$
\begin{aligned}
& \left|\mathrm{V}_{\mathrm{ub}}\right|=\left(4.05 \pm 0.18 \pm 0.58 \pm \begin{array}{l}
0.25 \\
\text { stat }
\end{array} \text { syst } \begin{array}{c}
\mathrm{b}->\mathrm{c} \\
\text { model }
\end{array} \begin{array}{c}
\mathrm{b}->\mathrm{u} \\
\text { model }
\end{array}\right. \\
& \text { Preliminary }
\end{aligned}
$$

$\operatorname{Cos} \theta_{\text {w } \ell}$

Summary

Endpoint $\left\|\mathrm{V}_{\mathrm{ub}}\right\|=(4.08 \pm \mathbf{0 . 6 3})$	10^{-3}	
$B \rightarrow \pi \ell v$	$\mathrm{~V}_{\mathrm{ub}} \mid=(\mathbf{3 . 3 2 + / - 0 . 6 3 / 0 . 5 0)}$	10^{-3}
3-D LL Fit $\left\|\mathrm{V}_{\mathrm{ub}}\right\|=(4.05 \pm \mathbf{0 . 8 9})$	$\mathbf{1 0}^{-3}$	

> CLEO has measured the yield of $B \rightarrow X_{u}$ ev above the lepton energy endpoint of $B \rightarrow X_{c} \ell v$. The total rate is extrapolated by using our well measured photon energy spectrum in $b \rightarrow s \gamma$. $\left|\mathrm{V}_{\mathrm{ub}}\right|$ is extracted from the total rate. Additional subleading corrections to the shape function are currently being investigated.
$>$ CLEO presented an updated $B \rightarrow \pi \ell v$ Branching ratio and a new (exclusive) extraction of $\left|\mathrm{V}_{\mathrm{ub}}\right|$.
> CLEO has also performed a log-likelihood fit to $B \rightarrow X \ell v$ in three independent kinematic variables. A preliminary value of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ was presented. The weight in the fit of events near the endpoint is not fully understood - do not average the inclusive results.

Backup I

