Measurements of $B \rightarrow X_c l \nu$ Decays

Vera Lüth, SLAC

BABAR Collaboration

Inclusive BR $(B \rightarrow X_c \ell v)$ and $|V_{cb}|$ Hadronic Mass Moments (Preliminary Measurement)

Semileptonic B Decays

Semileptonic decays are

- relatively simple theoretically at the parton level
- accessible experimentally
- sensitive to quark couplings to W^{±,}
 i.e. CKM elements |V_{cb}| and |V_{ub}|
- probe the dynamics of decays
- probe impact of strong interactions

✤ BR for semileptonic B decays can be related to |Vcb|

$$\Gamma_{sl}^{c} \equiv B \left(B \rightarrow X_{c} \ell \upsilon \right) / \tau_{B} = \gamma_{c} \left| V_{cb} \right|$$

- γ_c requires theoretical input (perturbative and non-perturbative)
- We try to measure other inclusive variables, like mass distributions, to extract more information

The BaBar Detector

SVT:	97% efficiency, 15 μ m z hit resolution (inner layers, perp. tracks)
SVT+DCH:	$\sigma(p_T)/p_T = 0.13 \% \times p_T + 0.45 \%$
DIRC:	K-π separation 4.2σ @ 3.0 GeV/c \rightarrow >3.0σ @ 4.0 GeV/c
EMC:	σ _F /E = 2.3 %·E ^{-1/4} ⊕ 1.9 %
v. Lüth ICHEP02	Amsterdam

Inclusive Electrons with Electron Tags

- Analysis based on small sample: 4/fb on Y(4s), 1/fb off Y(4s)
- Data Selection
 - □ Electron tag: p^{cms} >1.4 GeV/c
 - □ Electron signal: p^{cms} > 0.6 GeV/c
 - Electron ID:
 - Combined likelihood based on:
 - Electromagnetic Calorimeter (E/p, shower shape)
 - DIRC
 - (Cherenkov angle, # of photons)
 - Driftchamber (*dE/dx*)
- Two signal samples:
 Right sign: + Wrong sign: ++ or -

Electron Tagged Sample : Background

- Principal e[±] Backgrounds
 - Conversion/Dalitz pairs
 - Hadron mis-ID
 - Continuum background
- Physics background

□ Secondary electrons from other B:

- $b \rightarrow c \rightarrow e^+$
- $b \rightarrow \tau \text{-} \rightarrow e^{\text{-}}$, $b \rightarrow c \ cs \rightarrow e^{\text{-}}$
- Secondary electrons from same B
- charmonium
 - $B \rightarrow \psi \rightarrow e^+e^-$
- □ B B Mixing
- Secondary tag electrons

Right- and Wrong Sign Spectra

• Mixing \Rightarrow both spectra contain prompt and secondary e[±]

• with ε_{oa} = Efficiency of cut on opening angle α :

$$\frac{dN_{right-sign}}{dp^{*}} = \varepsilon_{oa} (p^{*}) \left[\frac{dN_{prompt}}{dp^{*}} (1 - f_{0}\chi_{0}) + \frac{dN_{secondary}}{dp^{*}} f_{0}\chi_{0} \right] \Rightarrow N_{prompt} = 25,070$$

$$\frac{dN_{wrong-sign}}{dp^{*}} = \left[\frac{dN_{prompt}}{dp^{*}} f_{0}\chi_{0} + \frac{dN_{secondary}}{dp^{*}} (1 - f_{0}\chi_{0}) \right]$$
(after correction for electron and tracking efficiency)

Fully Corrected Electron Spectrum

correction: 6.1± 0.9%

Semileptonic Branching Ratio and [V_{cb}]

Integration over spectrum & extrapolation to $p_{\ell}^{*}=0$:

$$BR(B \rightarrow X e v) = (10.87 \pm 0.18_{stat} \pm 0.30_{sys})\%$$

□ ARGUS : (9.7 ±0.5 ±0.4)% CLEO2: (10.49 ±0.17 ±0.43)% L3: (10.89 ±0.20 ±0.51)% BELLE : (10.90 ±0.12 ±0.49)%

OPAL: (10.78 ±0.08 ±0.5)% ALEPH: (10.70 ±0.10 ±0.35)%

Relation to $|V_{cb}|$ (A. Hoang, Z. Ligeti, A.V.Monahar)^[1]: *

$$|V_{cb}| = 0.0419 \sqrt{\frac{B(B \to X_c \ell \upsilon)}{0.105} \frac{1.6 \, ps}{\tau_B}} (1.0 \pm 0.019_{pert} \pm 0.017_{\lambda_1} \pm 0.012_{m_b})$$

With $\tau_{\rm B} = (1.601 \pm 0.022) \text{ps}$, and $\text{BR}(B \rightarrow X_{\mu} e \nu) = (1.7 \pm 0.5) 10^{-3}$ *

$$|V_{cb}| = 0.0423 \pm 0.0017_{exp} \pm 0.0020_{theory}$$

N.B. the theoretical errors have been added linearly

^[1] Phys. Rev. Lett. 82 (1999) 591. v. Lüth ICHEP02 Amsterdam

OPE Parameters and Mass Moments

Parameterization of decay rate in terms of Operator Product Expansion in * HQET in powers of $\alpha_s(m_b)\beta_0$ and Λ/m_{B_1}

$$\Gamma_{\rm sl} = \frac{G_{\rm F}^2 |V_{\rm cb}|^2}{192\pi^3} \, {\rm m}_{\rm B}^5 \, {\rm c}_1 \left\{ 1 - {\rm c}_2 \, \frac{\alpha_{\rm s}}{\pi} + \frac{{\rm c}_3}{{\rm m}_{\rm B}} \, \overline{\Lambda} \, (1 - {\rm c}_4 \, \frac{\alpha_{\rm s}}{\pi}) + \frac{{\rm c}_5}{{\rm m}_{\rm B}^2} \, \overline{\Lambda}^2 + {\rm c}_6 \, \overline{\Lambda}^2 + {\rm c}_6 \, \overline{\Lambda} \, (1 - {\rm c}_4 \, \frac{\alpha_{\rm s}}{\pi}) + {\rm o}(\frac{\alpha_{\rm s}^2}{{\rm m}_{\rm B}^2}) + {\rm o}(\frac{1}{{\rm m}_{\rm B}^3}) + {\rm o}(\frac{\alpha_{\rm s}^2}{{\rm m}_{\rm B}^3}) + {\rm$$

- $\Lambda, \lambda_1, \lambda_2$ are non-perturbative parameters

 - $\begin{array}{ll} \lambda_1 & (-) \mbox{ kinetic energy of the motion of the b-quark} \\ \lambda_2 & \mbox{ chromo-magnetic coupling of b-quark spin to gluon} \\ \mbox{ from B*-B mass difference, } \lambda_2 = 0. \ 12 \mbox{ GeV}^2 \end{array}$
 - $\square \Lambda = m_{\rm B} m_{\rm b} + (\lambda_1 3 \lambda_2)/2m_{\rm B} \dots$
 - Additional parameters enter at higher orders (ρ_1 , ρ_2 , τ_1 , τ_2 , τ_3 , τ_4) use theoretical estimates
- Similar expressions for moments of hadron mass spectrum or the lepton energy spectrum
- Coefficients c_i (not dependent on quark masses) can be calculated, as a * function of the minimum lepton momentum (Luke, Falk)^[1] [1] PR D57, 424 (1998)

Definition of Mass Moments

Event Selection

Data set: 55 M BB events

Analysis based on events with one fully hadronic B decay

- □ B → D Y[±] with D=(D⁰, D⁺, D^{*0}, D^{*+}) and Y[±]=(n₁π[±], n₂K[±], n₃K_S, n₄π⁰)
- Select candidates

$$|\Delta E| = |E_{B}^{*} - E_{beam}^{*}| < 3\sigma_{\Delta E}$$
$$M_{ES} = \sqrt{E_{beam}^{*2} - p_{B}^{*2}} > 5.27 GeV/c^{2}$$

- The events are further selected
 - □ ≥ 1 e or μ with p* > 0.9 GeV/c
 - $\Box |Q| \le 1$
 - $\Box \quad Q_{I} = Q_{B} \text{ for } B^{\pm}$
 - □ $|M_{miss}| < 1.0 \text{ GeV}^2$
- Final Sample
 5819 Signal Events, 3585 Background

Kinematic Fits to Events

- A 2-C kinematic fit is performed to the whole event
 - $\square \ B_1 \to D \ Y$
 - $\square \ B_2 \to X \ I \ \nu$
- Constraints of energy-momentum conservation
 - $\square |M_{miss}^2| = 0$
 - $\square M_1 = M_2$

Fit relies on event-by-event errors of measured particles and M_{miss}^2 .

- The fit improves the resolution and reduces the need to reconstruct all final state particles
- ✤ The fitted M_X is largely bias free

Fit to M_x Distribution

Cross Checks of Fit to M_X

Check of High Mass Charm States

- Largest systematic uncertaintes are the high mass charm states, both resonant and non-resonant
- Estimate contribution from data:
 - $\hfill\square$ assume PDG BR for D I ν and D*I ν
 - fix background
 - Subtract these contributions from data
 - Resultant distribution is fully compatible with MC prediction
 - The mean is consistent with the mean M_X used in the determination of the moments!

NB distribution not corrected for detector effects.

Extraction of HQET Parameter λ_1 and Λ

[1] CLEO PRL 87, 251808 (2001) V. Lüth ICHEP02 Amsterdam

NB: Data points highly correlated

- From an electron tagged sample of BB events BABAR measured
 - $\Box \quad BR = (10.87 \pm 0.18_{stat} \pm 0.30_{syst})\%$
 - \Box |Vcb| = 0.0423 ± 0.0017_{exp} ± 0.0020 _{theory}
 - These measurements agree well with previous measurements
- From a B tagged sample of BB events BABAR measured the hadronic mass spectrum down to lepton momenta of p*=0.9 GeV/c.
- Observe a strong rise as p* decreases, this is attributed to high-mass, non-resonant D(*) π states
- ✤ Momentum dependence of moments not consistent with Λ measurements from b → s γ, but can be described by HQE with other values of Λ.
- ♦ Measurement for p*>1.5 GeV/c, fully consistent with Λ =0.35±0.07GeV λ_1 = 0.17 ± 0.06 ±0.07GeV²

- More data and more detailed studies of higher moments expected
 - Extend measurements to lower p*_{min}
 - Differential measurements
 - □ Higher moments of hadronic mass distributions
 - □ Moments of lepton momentum in lepton tagged and fully tagged B events
 - $\hfill\square$ Photon spectrum in b \rightarrow s γ
 - $\hfill\square$ Also studies of b \rightarrow u l ν
- ✤ Measurements of exclusive BR in progress
- We are looking forward to these new measurements, more data, and a full assessment of uncertainties.