Study of Spectral Moments in Semileptonic b Decays with the DELPHI Detector at LEP

Marta Calvi Università di Milano Bicocca and I.N.F.N.

On behalf of the DELPHI Collaboration

Outline:

mass spectrum

energy spectrum

Interpretation

ICHEP 2002, Amsterdam

Motivation (I)

 \bigvee V_{cb}, m_b and m_c are fundamental parameters of the Standard Model which have to be measured by experiments

At present, the best accuracy is achievable in the determination of V_{cb} from inclusive semileptonic b-hadron decays:

$$\Gamma_{sl} (b \to c \ell^- \overline{\upsilon}) = |V_{cb}|^2 f (parameters) = \frac{BR (b \to c \ell^- \overline{\upsilon})}{\downarrow}$$
Evaluated by theory based on O.P.E., few % accuracy 1 % accuracy

Improvement are possible with additional measurements of the characteristics of b-hadron semileptonic decays:

- Moments of hadronic mass spectrum
- Moments of lepton energy spectrum

Comparison of results from different measurements provides a test of the consistency of O.P.E. predictions and of underlying assumptions

Motivation (II)

• Advantages of Z⁰ kinematics:

 $E_B \sim 30 \text{ GeV} \Rightarrow \text{ large boost}$ Use full lepton energy spectrum in the B rest frame

b and b in separate hemispheres ($\gamma c\tau \sim 2 \text{ mm}$) \Rightarrow good secondary vertex reconstruction and signal/ background separation

• Challenge: complete reconstruction of the B system

E lepton - B rest frame (GeV)

Moments of hadronic mass distribution in b semileptonic decays (I)

 $\begin{array}{c} & & & \\ & &$

with D⁰, D⁺ and D^{*+} fully reconstructed and p_{π} >0.5 GeV/c

Leptons with p(Lab)>2 GeV/c

theoretical expression for the moments with coefficients different wrt analyses with more stringent limits to the lepton phase space region

Signal/background separation with a discriminant variable based on:

- \bullet presence of additional charged particles at the charm vertex in addition to D^(*), ℓ^- and ν
- π impact parameter, secondary vertex quality etc..

Moments of hadronic mass distribution in b semileptonic decays (II)

ICHEP 2002, Amsterdam

Marta Calvi – Study of Spectral Moments...

5

Moments of hadronic mass distribution in b semileptonic decays (III)

Study of the mass distribution of D** states

- Fit to $\Delta_m = m(D^{(*)}\pi) m(D^{(*)})$ distributions considering resonant $D_0^{*+}, D_1^{*+}, D_1^{+}, D_2^{++}$ and non resonant $D\pi$ states
- Evaluate moments from the fitted D^{**} mass distribution: <**m**ⁿ_{D**}>

ICHEP 2002, Amsterdam

Moments of hadronic mass distribution in b semileptonic decays (IV)

 \star

From the fit:

 $BR(\overline{B^0} \rightarrow D^{**} \ell^- v) = (2.6 \pm 0.5 \pm 0.4)\%$ with broad D_1^* dominant contributing channel

4 From the measured $\langle m^n_{D^{**}} \rangle$ and using:

 $\langle m^n_H \rangle = p_D m^n_D + p_{D^*} m^n_{D^*} + p_{D^{**}} \langle m^n_{D^{**}} \rangle p_{D^{**}} = 1 - p_D - p_{D^*}$ derive moments of hadronic mass distribution:

$$\begin{split} M_1 &= < m_H^2 - m_{\overline{D}}^2 > = 0.534 \pm 0.041 \pm 0.074 \text{ GeV/c}^2 \\ M_2 &= < (m_H^2 - m_{\overline{D}}^2)^2 > = 1.51 \pm 0.20 \pm 0.23 \text{ (GeV/c}^2)^2 \\ M_2^4 &= < (m_H^2 - < m_H^2)^2 > = 1.23 \pm 0.16 \pm 0.15 \text{ (GeV/c}^2)^2 \\ M_3^4 &= < (m_H^2 - < m_H^2)^3 > = 2.97 \pm 0.67 \pm 0.48 \text{ (GeV/c}^2)^3 \end{split}$$

Moments of lepton spectrum in b s.l. decays (I)

Inclusive semileptonic B decay reconstruction

- Select $Z^0 \rightarrow b\overline{b}$ events with b-tag algorithm
- Reconstruct the B system: • E (B) = E (vertex) + E (ℓ) + E (ν)

Charm vertex reconstruction with iterative procedure

from missing energy $\Delta E_v = 3.2 \text{ GeV}$

B direction from B reconstructed momentum and B decay flight direction

• Boost lepton in B rest frame $\Delta E^*_{lepton} \approx 250 \text{ MeV}$ Tag leptons muons (p> 2.5GeV/c) electrons (p> 3GeV/c)

Moments of lepton spectrum in b s.l. decays (II)

Background reduction

Without introducing a bias to the lepton energy distribution

- Use combination of 2 sets of probabilistic variables based on:
- Charge correlation
- Event topology

Moments of lepton spectrum in b s.l. decays (III)

BĶģ

Data

Lepton energy spectrum measurement

Correct for:

- e.m. radiation
- $b \rightarrow u \ell v$ contribution
- B^{0}_{s} and Λ_{h} contribution
 - \Rightarrow 1–3 MeV shifts

measured spectrum,

ICHEP 2002, Amsterdam

Moments of lepton spectrum in b s.l. decays (IV)

Preliminary DELPHI results:

 $\begin{array}{l} < E_{\ell} > = (1.383 \pm 0.012 \textit{(stat.)} \pm 0.009 \textit{(syst.)}) \text{ GeV} \\ < (E_{\ell} - < E_{\ell} >)^2 > = (0.192 \pm 0.005 \textit{(stat.)} \pm 0.008 \textit{(syst.)}) \text{ GeV}^2 \\ < (E_{\ell} - < E_{\ell} >)^3 > = (-0.029 \pm 0.005 \textit{(stat.)} \pm 0.006 \textit{(syst.)}) \text{ GeV}^3 \end{array}$

 Stability of the result checked wrt e/µ samples and different working points

Preliminary systematic uncertainty from:

- ✓ Monte Carlo modelling: B_d , B_s , Λ_b fractions; D, D*, D** fractions,
 - b fragmentation
- Background subtraction (controlled with anti-tagged lepton sample)
- Unfolding procedure and lepton energy resolution

Interpretation of the measurements

Moments of hadronic mass spectrum and of lepton energy spectrum are sensitive to the nonperturbative parameters of the Heavy Quark Expansion.

At order $1/m_b^2 \Rightarrow \overline{\Lambda}$, λ_1, λ_2 ($\lambda_2 \approx 0.12 \text{ GeV}^2$). At order $1/m_b^3 \Rightarrow \rho_1, \rho_2, T_{1-4}$

Two different approaches have been followed in this analysis:

1) Pole mass expansions $M_n = f_n(\lambda_1, \Lambda, \lambda_2, T_1, T_2, ...)$

(A.F.Falk, M.Luke and P.Gambino for lepton spectra)

2) Running quark masses $M_n = f_n(\mu_\pi^2, m_b(1GeV), \mu_G^2, \rho_D^3, \rho_{LS}^3, ...)$ (M.Voloshin and N.Uraltsev for $\beta_0 \alpha_s^2$ and $1/m_b^3$ corrections)

$$M_{n} = \frac{m_{b}^{n}(\mu)}{2^{n}}\phi_{n}(r)\left(1 + A_{pert}(r,\mu) + \frac{\mu_{\pi}^{2}}{m_{b}^{2}(\mu)}B(r) + \frac{\mu_{G}^{2}}{m_{b}^{2}(\mu)}C(r) + \frac{\rho_{D}^{3}}{m_{b}^{3}(\mu)}D(r) + \frac{\rho_{LS}^{3}}{m_{b}^{3}(\mu)}E(r)\right)$$

with: $r = \frac{m_c^2(\mu)}{m_b^2(\mu)}$ Mass expansion: $m_{b,c}(\mu) = M_{B,D} - \overline{\Lambda}(\mu) - \frac{\mu_{\pi}^2 - \mu_{G}^2}{2m_b(\mu)} - \frac{\rho_{D}^3 - \rho_{LS}^3}{4m_b^2(\mu)} - \delta_{B,D}$

ICHEP 2002, Amsterdam

Constraints to $\overline{\Lambda}$ and λ_1

Constraints to λ_1 and Λ from first and second moment of hadronic mass spectrum and lepton energy spectrum

ICHEP 2002, Amsterdam

DELPH

Constraints to m_c (1GeV) and μ_{π}^2

CONCLUSIONS

Measurement of the first three moments of hadronic mass distribution and lepton energy spectrum in semileptonic b decays at the Z⁰ has been performed for the first time.

- Comparison with calculations for non-truncated spectra are satisfactory
- Constraints on non-perturbative parameters of Heavy Quark Expansion have been derived