The $\mathbf{B} \rightarrow \mathbf{D}^{*} \ell \nu$ Form Factor at Zero Recoil and the Determination of $\left|\mathbf{V}_{\mathbf{c b}}\right|$

James N. Simone ${ }^{\dagger}$

Fermi National Accelerator Laboratory
P.O. Box 500

Batavia, IL 60510-0500, USA

ICHEP 02 - July 2002
S. Hashimoto, A.S. Kronfeld, P.B. Mackenzie, S.M. Ryan and J.N.S.
hep-ph/0110253
†simone@fnal.gov

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ and the $\mathrm{B} \rightarrow \mathrm{D}^{*} \ell \nu$ Decay Rate

In the zero recoil limit,

$$
\lim _{\omega \rightarrow 1} \frac{1}{\left(\omega^{2}-1\right)^{1 / 2}} \frac{d \Gamma\left(B \rightarrow D^{*} \ell \nu\right)}{d \omega}=\binom{\text { known }}{\text { factors }}\left|V_{c b}\right|^{2}\left|h_{A_{1}}(1)\right|^{2}
$$

[CLEO CLNS 01-1773]

$$
\left|V_{c b}\right| h_{A_{1}}(1)=(38.3 \pm 0.5 \pm 0.9) \times 10^{-3} \quad[\text { World Avg.: Artuso \& Barberio }]
$$

Average of ALEPH, DELPHI, OPAL, Belle and CLEO

$\mathrm{B} \rightarrow \mathrm{D}^{*} \ell \nu$ in HQET

Anatomy of power law corrections [Falk \& Neubert]:

$$
h_{A_{1}}(1)=\eta_{A}\left[1-\frac{\ell_{V}}{\left(2 m_{c}\right)^{2}}+\frac{2 \ell_{A}}{4 m_{c} m_{b}}-\frac{\ell_{P}}{\left(2 m_{b}\right)^{2}}+\mathcal{O}\left(1 / m_{Q}^{3}\right)\right]
$$

Radiative correction η_{A} known to two-loop level [Czarnecki \& Melnikov].
Three unknown long-distance coefficients: ℓ_{V}, ℓ_{A} and ℓ_{P}. Use latttice!
Three constraints: the matrix elements [Hashimoto]
$\left\langle D^{*}\right| \mathcal{A}_{j}|B\rangle \propto h_{A_{1}}(1) \Longrightarrow \quad \ell_{V}, \ell_{A}$ and ℓ_{P}
$\langle D| \mathcal{V}_{0}|B\rangle \propto \quad h_{+}(1)=\eta_{V}\left[1-\ell_{P}\left(\frac{1}{2 m_{c}}-\frac{1}{2 m_{b}}\right)^{2}+\ldots\right]$
$\left\langle D^{*}\right| \mathcal{V}_{0}\left|B^{*}\right\rangle \propto h_{1}(1)=\eta_{V}\left[1-\ell_{V}\left(\frac{1}{2 m_{c}}-\frac{1}{2 m_{b}}\right)^{2}+\ldots\right]$

Double Ratios of 3-pt Correlators

- Bulk of statistical and systematic errors cancel.
- Large part of renormalzation captured nonperturbatively.

$$
\begin{aligned}
& \mathcal{R}_{+}=\frac{\langle D| \mathcal{V}_{0}|B\rangle\langle B| \mathcal{V}_{0}|D\rangle}{\langle D| \mathcal{V}_{0}|D\rangle\langle B| \mathcal{V}_{0}|B\rangle} \Rightarrow\left|h_{+}(1)\right|^{2} \quad \text { form factor for } B \rightarrow D \\
& \mathcal{R}_{1}=\frac{\left\langle D^{*}\right| \mathcal{V}_{0}\left|B^{*}\right\rangle\left\langle B^{*}\right| \mathcal{V}_{0}\left|D^{*}\right\rangle}{\left\langle D^{*}\right| \mathcal{V}_{0}\left|D^{*}\right\rangle\left\langle B^{*}\right| \mathcal{V}_{0}\left|B^{*}\right\rangle} \Rightarrow\left|h_{1}(1)\right|^{2} \quad \text { form factor for } B^{*} \rightarrow D^{*} \\
& \mathcal{R}_{A_{1}}=\frac{\left\langle D^{*}\right| \mathcal{A}_{1}|B\rangle\left\langle B^{*}\right| \mathcal{A}_{1}|D\rangle}{\left\langle D^{*}\right| \mathcal{A}_{1}|D\rangle\left\langle B^{*}\right| \mathcal{A}_{1}|B\rangle} \Rightarrow\left|H_{A_{1}}(1)\right|^{2}
\end{aligned}
$$

Note $H_{A_{1}}(1)$ is not the desired form factor $h_{A_{1}}(1)$ for $B \rightarrow D^{*} \ell \nu$.

$$
H_{A_{1}}(1)=\hat{\eta}_{A}\left[1-\ell_{A}\left(\frac{1}{2 m_{c}}-\frac{1}{2 m_{b}}\right)^{2}+\ldots\right]
$$

Perturbative Matching

Lattice to QCD matching proceeds through intermediate HQET scheme in which the long-distance ℓ coefficients are determined.

- ρ 's known to one-loop order [Harada, Kronfeld, Hashimoto \& Onogi].
- η 's know to two loops [Czarnecki \& Melnikov].
- BLM-improved matching performed to one-loop order in the V-scheme.
- For $\beta=5.9, \eta_{A}=0.9724$, and e.g.

$m_{0 b}, m_{0 c} \mathrm{GeV}$	ρ_{V} / η_{V}	$\hat{\rho}_{A} / \hat{\eta}_{A}$
$6.03,0.83$	1.0015	0.9868
$4.36,1.16$	1.0016	0.9944
$3.06,2.02$	1.0003	0.9990

Double Ratio Plateaus

Example fits. Mesons created (annihilated) at $t=0(t=16)$. Double ratio values as a function of time when vector or axial-vector current is applied.

Reasonable χ^{2} obtained for all ratio averages.

- $\mathrm{h}_{+}(1), \mathrm{h}_{1}(1)$ and $\mathrm{H}_{\mathrm{A}_{1}}(1)$ Mass Dependence

Mass dependence is of the form e.g.

$$
\frac{1-h_{1}(1) / \eta_{V}}{\Delta^{2}}=a^{2} \ell_{V}-a^{3} \ell_{V}^{[3]}\left(\frac{1}{2 a m_{c}}+\frac{1}{2 a m_{b}}\right)+\ldots
$$

where $\Delta=\left(\frac{1}{2 a m_{c}}-\frac{1}{2 a m_{b}}\right)$.

Determining $\mathrm{h}_{\mathrm{A}_{1}}(1)$

Recall,

$$
h_{A_{1}}(1)=\eta_{A}\left[1-\frac{\ell_{V}}{\left(2 m_{c}\right)^{2}}+\frac{2 \ell_{A}}{4 m_{c} m_{b}}-\frac{\ell_{P}}{\left(2 m_{b}\right)^{2}}+\mathcal{O}\left(1 / m_{Q}^{3}\right)\right]
$$

- HQ spin symmetry relates $B \rightarrow D^{*}$ to $B^{*} \rightarrow D^{*}$ in the limit $m_{b} \rightarrow \infty$.
- Conclude that the replacement $\ell_{V}^{e f f}=\ell_{V}-\ell_{V}^{[3]} /\left(2 m_{c}\right)$ in the formula reproduces the $1 /\left(m_{c}^{3}\right)$ correction to $h_{A_{1}}(1)$.
- We include the analogous $1 /\left(m_{b}^{3}\right)$ correction from $\ell_{P}^{[3]}$.
- The replacement $\ell_{A}^{e f f}=\ell_{A}+\frac{1}{4} \ell_{A}^{[3]}\left(\frac{1}{m_{c}}+\frac{1}{m_{b}}\right)$ yields much of the $1 /\left(m_{c}^{2} m_{b}\right)$ correction.
- Remaining leading uncertainty is an $\mathcal{O}\left(\frac{\bar{\Lambda}}{8 m_{c} m_{b}}\left[\frac{1}{m_{c}}-\frac{1}{m_{b}}\right]\right)$ correction to $h_{A_{1}}(1)$. Estimate $\delta h_{A_{1}} \approx \pm 0.0017$

$\mathrm{h}_{\mathrm{A}_{1}}$ Cutoff Dependence

- Mild cutoff dependence relative to statistical errors.
- Average the $\beta=6.1$ and 5.9 determinations for strange spectator quark.
- $h_{A_{1}}(1)=0.9293_{-92}^{+110}$ with combined statistical and fit uncertainties.
- Use coarsest $(\beta=5.7)$ result to bound a dependence: $+0.0032-0.0141$

β	$h_{A_{1}}(1)$
6.1	0.9274_{-148}^{+163}
5.9	0.9300_{-68}^{+76}
5.7	0.9400_{-135}^{+152}

Statistical and fit uncertainties added in quadrature.

Spectator mass dependence

- extrapolate (in m_{π}^{2}) to the physical mass
- linear extrapolation for $\beta=5.9$ results (black curve with uncert. contours)
- $h_{A_{1}}(1)=0.9130_{-0.0173}^{+0.0283}$ value shifts down; statistical errors increase
- red curves are expectation in one loop χ PT [Randall \& Wise]
- vary $g_{D * D \pi}$: systematic uncertainty of ${ }_{-0.0163}^{+0.0000}$ in $h_{A_{1}}$.

Results

$$
h_{A_{1}}(1)=0.9130_{-0.0173}^{+0.0238}
$$

Additional uncertainties that must be added to this result include:

source of uncertainty	$\frac{\left.\delta \mathbf{h}_{\mathbf{A}_{\mathbf{1}}} \mathbf{1}\right)}{}$	$\underline{\text { remedy }}$
spectator quark mass dependence	${ }_{-0.0000}^{+0.0000}$	smaller m_{π}
tuning of m_{c} and m_{b}	${ }_{-0.0068}^{+0.0066}$	improve \mathcal{S}
terms of order $\alpha_{s}\left(\bar{\Lambda} / 2 m_{c}\right)^{2}$	± 0.0114	improve J_{μ}, PT
radiative corrections \geq 2-loop order	± 0.0082	2-loop PT
term of order $\bar{\Lambda} /\left(8 m_{c}^{2} m_{b}\right)$	± 0.0017	extend method
residual a dependence	${ }_{-0.0141}^{+0.0032}$	improve \mathcal{S}, J_{μ}

The quenched approximation affects the deviation of $\mathbf{h}_{\mathbf{A}_{1}}(\mathbf{1})$ from unity. Guided by the quenched uncertainty in f_{B} (long dist.) and the running of quenched α_{s} (short dist.) we estimate the quenching uncertainty to be ${ }_{-0.0143}^{+0.0061}$.

