The $B \to D^* \ell \nu$ Form Factor at Zero Recoil and the Determination of $|V_{cb}|$

James N. Simone[†]

Fermi National Accelerator Laboratory P.O. Box 500 Batavia, IL 60510–0500, USA

ICHEP 02 – July 2002

S. Hashimoto, A.S. Kronfeld, P.B. Mackenzie, S.M. Ryan and J.N.S.

hep-ph/0110253

[†]simone@fnal.gov

- $|\mathbf{V_{cb}}|$ and the $\mathbf{B} ightarrow \mathbf{D}^* \ell u$ Decay Rate

In the zero recoil limit,

 $|V_{cb}| h_{A_1}(1) = (38.3 \pm 0.5 \pm 0.9) \times 10^{-3}$ [World Avg.: Artuso & Barberio]

Average of ALEPH, DELPHI, OPAL, Belle and CLEO

- ${f B} ightarrow {f D}^* \ell u$ in HQET

Anatomy of power law corrections [Falk & Neubert]:

$$h_{A_1}(1) = \eta_A \left[1 - \frac{\ell_V}{(2m_c)^2} + \frac{2\ell_A}{4m_c m_b} - \frac{\ell_P}{(2m_b)^2} + \mathcal{O}(1/m_Q^3) \right]$$

Radiative correction η_A known to two-loop level [Czarnecki & Melnikov]. Three unknown long-distance coefficients: ℓ_V , ℓ_A and ℓ_P . Use latttice! Three constraints: the matrix elements [Hashimoto]

Double Ratios of 3-pt Correlators

- Bulk of statistical and systematic errors cancel.
- Large part of renormalzation captured nonperturbatively.

$$\mathcal{R}_{+} = \frac{\langle D | \mathcal{V}_{0} | B \rangle \langle B | \mathcal{V}_{0} | D \rangle}{\langle D | \mathcal{V}_{0} | D \rangle \langle B | \mathcal{V}_{0} | B \rangle} \Rightarrow |h_{+}(1)|^{2} \quad \text{form factor for } B \to D$$
$$\mathcal{R}_{1} = \frac{\langle D^{*} | \mathcal{V}_{0} | B^{*} \rangle \langle B^{*} | \mathcal{V}_{0} | D^{*} \rangle}{\langle D^{*} | \mathcal{V}_{0} | D^{*} \rangle \langle B^{*} | \mathcal{V}_{0} | B^{*} \rangle} \Rightarrow |h_{1}(1)|^{2} \quad \text{form factor for } B^{*} \to D^{*}$$
$$\mathcal{R}_{A_{1}} = \frac{\langle D^{*} | \mathcal{A}_{1} | B \rangle \langle B^{*} | \mathcal{A}_{1} | D \rangle}{\langle D^{*} | \mathcal{A}_{1} | D \rangle \langle B^{*} | \mathcal{A}_{1} | B \rangle} \Rightarrow |H_{A_{1}}(1)|^{2}$$

Note $H_{A_1}(1)$ is not the desired form factor $h_{A_1}(1)$ for $B \to D^* \ell \nu$.

$$H_{A_1}(1) = \hat{\eta}_A \left[1 - \frac{\ell_A}{2m_c} \left(\frac{1}{2m_c} - \frac{1}{2m_b} \right)^2 + \dots \right]$$

Perturbative Matching

Lattice to QCD matching proceeds through intermediate HQET scheme in which the long-distance ℓ coefficients are determined.

- ρ 's known to one-loop order [Harada, Kronfeld, Hashimoto & Onogi].
- η 's know to two loops [Czarnecki & Melnikov].
- BLM-improved matching performed to one-loop order in the V-scheme.
- For $\beta = 5.9$, $\eta_A = 0.9724$, and e.g.

$m_{0b},m_{0c}{ m GeV}$	$ ho_V/\eta_V$	$\hat{ ho}_A/\hat{\eta}_A$
6.03, 0.83	1.0015	0.9868
4.36, 1.16	1.0016	0.9944
3.06, 2.02	1.0003	0.9990

Double Ratio Plateaus

Example fits. Mesons created (annihilated) at t = 0 (t = 16). Double ratio values as a function of time when vector or axial-vector current is applied.

Reasonable χ^2 obtained for all ratio averages.

- $\mathbf{h_+}(1)$, $\mathbf{h_1}(1)$ and $\mathbf{H_{A_1}}(1)$ Mass Dependence -

Mass dependence is of the form *e.g.*

Determining $h_{\mathbf{A_1}}(1)$

Recall,

$$h_{A_1}(1) = \eta_A \left[1 - \frac{\ell_V}{(2m_c)^2} + \frac{2\ell_A}{4m_cm_b} - \frac{\ell_P}{(2m_b)^2} + \mathcal{O}(1/m_Q^3) \right]$$

- HQ spin symmetry relates $B \to D^*$ to $B^* \to D^*$ in the limit $m_b \to \infty$.
- Conclude that the replacement $\ell_V^{eff} = \ell_V \ell_V^{[3]}/(2m_c)$ in the formula reproduces the $1/(m_c^3)$ correction to $h_{A_1}(1)$.
- We include the analogous $1/(m_b^3)$ correction from $\ell_P^{[3]}$.
- The replacement $\ell_A^{eff} = \ell_A + \frac{1}{4} \ell_A^{[3]} \left(\frac{1}{m_c} + \frac{1}{m_b} \right)$ yields much of the $1/(m_c^2 m_b)$ correction.
- Remaining leading uncertainty is an $\mathcal{O}\left(\frac{\bar{\Lambda}}{8m_cm_b}\left[\frac{1}{m_c}-\frac{1}{m_b}\right]\right)$ correction to $h_{A_1}(1)$. Estimate $\delta h_{A_1} \approx \pm 0.0017$

h_{A_1} Cutoff Dependence

- Mild cutoff dependence relative to statistical errors.
- Average the $\beta=6.1$ and 5.9 determinations for strange spectator quark.
- $h_{A_1}(1) = 0.9293^{+110}_{-92}$ with combined statistical and fit uncertainties.
- Use coarsest ($\beta=5.7$) result to bound a dependence: $+0.0032\,-0.0141$

Spectator mass dependence

- extrapolate (in m_{π}^2) to the physical mass
- linear extrapolation for $\beta = 5.9$ results (black curve with uncert. contours)
- $h_{A_1}(1) = 0.9130^{+0.0283}_{-0.0173}$ value shifts down; statistical errors increase
- red curves are expectation in one loop $\chi {\rm PT}$ [Randall & Wise]
- vary $g_{D^*D\pi}$: systematic uncertainty of $^{+0.0000}_{-0.0163}$ in h_{A_1} .

Results

 $h_{A_1}(1) = 0.9130^{+0.0238}_{-0.0173}$

Additional uncertainties that must be added to this result include:

source of uncertainty	$\delta \mathbf{h_{A_1}(1)}$	remedy
spectator quark mass dependence	$+0.0000 \\ -0.0163$	smaller m_π
tuning of m_c and m_b	$+0.0066 \\ -0.0068$	improve ${\cal S}$
terms of order $lpha_s (ar\Lambda/2m_c)^2$	± 0.0114	improve J_{μ} , PT
radiative corrections \geq 2-loop order	± 0.0082	2-loop PT
term of order $ar{\Lambda}/(8m_c^2m_b)$	± 0.0017	extend method
residual a dependence	$+0.0032 \\ -0.0141$	improve ${\cal S}$, J_{μ}

The quenched approximation affects the **deviation of** $h_{A_1}(1)$ from unity. Guided by the quenched uncertainty in f_B (long dist.) and the running of quenched α_s (short dist.) we estimate the quenching uncertainty to be $^{+0.0061}_{-0.0143}$.