Heavy-to-light decays at large recoil: Systematic treatment of short- and long-distance QCD effects

Markus Diehl (RWTH Aachen, Germany)

- 1. Introduction
- 2. Effective theory for soft and collinear quarks and gluons
- 3. The effective heavy-to-light current
- 4. From quarks to hadrons: heavy-to-light form factors
- 5. Summary

Based on work with M. Beneke, A. Chapovsky, Th. Feldmann [hep-ph/0206152]

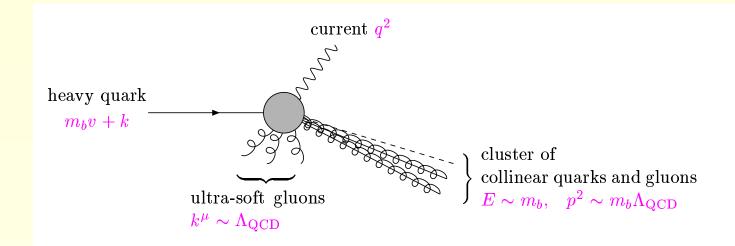
– M. Diehl, ICHEP 2002, Amsterdam, 25/7/2002

1. Introduction

- general idea of factorization in QCD:
 - \star separate dynamics at different scales
 - \star explicitly evaluate perturbative physics at large momentum scales
 - \rightarrow left with soft hadronic matrix elements (dynamics at smaller scales)
- exclusive B decays into light mesons (e.g. $B \to \pi \, \ell \nu$, $B \to K^* \ell^+ \ell^-$, $B \to \pi K$) in kinematics where energy E of light meson large ($\sim m_b$)
 - \star small expansion parameter: $\Lambda_{
 m QCD}/m_b$
- different approaches:
 - * analyze Feynman diagrams, e.g. QCD factorization [Beneke et al., '99–'01]
 - \star effective field theory: deal with fields and operators
 - * make dynamical symmetries explicit
 - * general framework: can use in many different processes
 - \ast systematic treatment of power corrections (here: stay at leading order $lpha_s$)

Effective field theory approach

identify relevant momentum regions in physical process



- retain momentum modes (nearly on-shell):
 - \star heavy quarks \rightarrow HQET
 - ★ "collinear" and "ultrasoft" quarks/gluons
 - \rightarrow SoftCollinearEffectiveTheory [Bauer et al., '00, '01]
- "integrate out" hard modes with $p^2 \sim m_b^2$ (and "soft" ones with $p^\mu \sim \sqrt{m_b \Lambda_{\rm QCD}}$)

Setting up the effective theory

- introduce a separate field for each momentum mode $A^{\mu}_{c}(x)$, $A^{\mu}_{us}(x)$, ...
- eff. theory = Lagrangian for these fields that reproduces QCD results to a given accuracy in $\lambda = \sqrt{\Lambda_{\rm QCD}/m_b}$
- for fermions: project out and keep "large" spinor components (eliminate "small" components)
 - * heavy quark: $h_v(x) = e^{-im_b vx} \frac{1}{2}(1+\psi) Q(x)$

 \hookrightarrow also split off large phase

* collinear quark: $\xi(x) = \frac{1}{4} \eta_- \eta_+ q(x)$

light-like vectors: n_{-} collinear momenta, n_{+} in opposite direction

 \star ultrasoft quark: keep all spinor components: $q_{us}(x)$

2. Effective theory for soft and collinear quarks and gluons

- determine power counting for
 - \star momentum components: $n_+p_c\sim 1, \;\; p_{c\perp}\sim \lambda$, \ldots
 - \star fields: $n_+A_c \sim 1$, $A_{c\perp} \sim \lambda$, ...
 - * derivatives: $(n_+\partial)\xi \sim \xi$, $(n_+\partial)q_{us} \sim \lambda^2 q_{us}$, ...
- eff. theory "inherits" gauge invariance from QCD \rightarrow define gauge transformations for fields ξ , q_{us} , A_c , A_{us}
- derive effective Lagrangian
 - \star start with QCD Lagrangian for light quarks $\mathcal{L} = \bar{q} \, i D q$
 - integrate out small Dirac components of collinear quark field (e.g. using path integral formalism)
 - \star order operators in powers of λ

"SCET lite": without ultrasoft quarks

$$\mathcal{L}_c = \bar{\xi} in_- D \frac{\not n_+}{2} \xi + \bar{\xi} i \not D_\perp W \frac{1}{in_+ \partial} W^\dagger i \not D_\perp \frac{\not n_+}{2} \xi$$

- inverse operator $(n_+\partial)^{-1} \rightarrow \text{nonlocal action}$
- sum of gluon fields $A = A_c + A_{us}$ in covariant derivative $D = \partial igA$ and Wilson line $W(x) = P \exp \left\{ ig \int_{-\infty}^{0} ds \ n_{+}A(x + sn_{+}) \right\}$ \Rightarrow explicitly gauge invariant
- must still expand in λ :

★ A_c and A_{us} have different scaling in $\lambda \to \text{Taylor}$ expand D and W★ $A_{us}(x)$ varies more slowly than collinear fields \to Taylor expand in x

• read off vertices, e.g. $\overline{\xi} (n_-A_{us}) \xi$, $\overline{\xi} A_{c\perp} A_{c\perp} \xi$, $\overline{\xi} (n_+A_c)^n \xi$

SCET including ultrasoft quarks

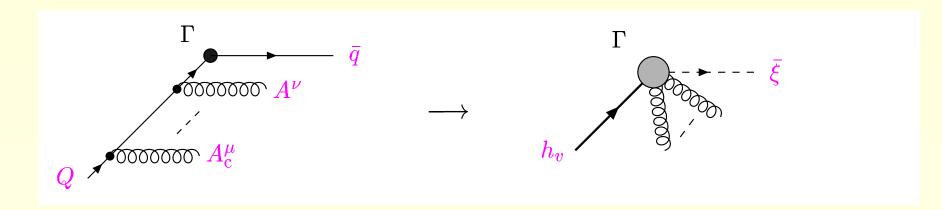
- same procedure as before
- calculated corrections of $O(\lambda)$ and $O(\lambda^2)$ in \mathcal{L} \rightarrow couplings between ξ , q_{us} , and gluons

* result involves "ultrasoft Wilson line" $Z = W|_{A_c=0}$ in addition to W

no intrinsic scale ⇒ no loop corrections to L
 i.e. all Wilson coefficients = 1
 (different from HQET, where have scale m_b)

3. The effective heavy-to-light current

• heavy quark goes off-shell after radiation of collinear gluon \rightarrow effective vertex



- match $Q_{\text{QCD}} \rightarrow e^{-im_b vx} Q_{\text{eff}}(A_c, A_{us}, h_v)$ two approaches:
 - \star diagrammatic (radiation of 1, 2, 3, ... gluons \rightarrow geometric series)
 - \star solve Dirac equation for Q_{eff} in external field $A = A_c + A_{us}$
- match $q_{\text{QCD}} \rightarrow q_{\text{eff}}(A_c, A_{us}, \xi)$ using results from SCET
- current $[\overline{q} \Gamma Q]_{QCD} \rightarrow e^{-im_b vx} \overline{q}_{eff} \Gamma Q_{eff}$

Effective current: Results

• can write Q_{eff} in manifestly reparametrization invariant form:

$$Q_{\text{eff}} = WZ^{\dagger} Q_{v} - \frac{1}{\mathcal{V}^{2} - 1} \left(\mathcal{V} \mathcal{V} WZ^{\dagger} - WZ^{\dagger} \mathcal{V}_{\text{us}} \mathcal{V}_{\text{us}} \right) Q_{v} + O(\lambda^{3} Q_{v}).$$

with
$$\mathcal{V}^{\mu} = v^{\mu} + \frac{iD^{\mu}}{m_b}$$
 and $Q_v = \left(1 + \frac{i\mathcal{D}_{us}}{m_b} + \dots\right)h_v$ defined as in HQET

- result for effective current including corrections of $O(\lambda)$ and $O(\lambda^2)$
- Taylor expansion in λ as for eff. Lagrangian

4. From quarks to hadrons: heavy-to-light form factors

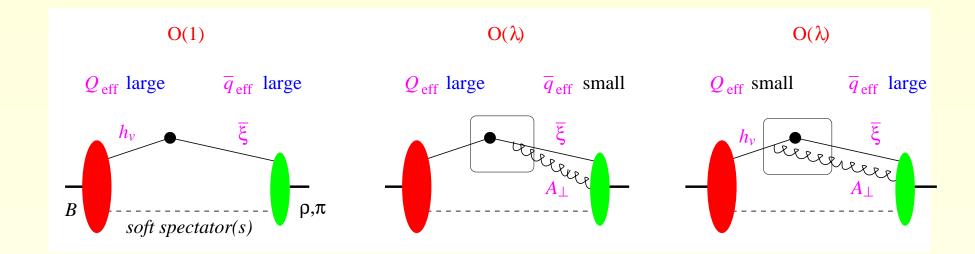
- here: consider only contributions where spectator quark remains soft (neglect hard spectator interactions $\sim \alpha_s$)
- match QCD matrix elements $\langle L | \overline{q} \Gamma Q | B \rangle$ onto $\langle L | \overline{q}_{eff} \Gamma Q_{eff} | B \rangle$ $(L = \pi, \rho, K^*, \ldots)$
- project $\overline{q}_{\text{eff}}(\overline{\xi}, A_c, A_{us})$ and $Q_{\text{eff}}(A_c, A_{us}, h_v)$ on large and small components
 - \star leading order in λ : only large components for both fields

\rightarrow form factor relations	L pseudoscalar: $3 \rightarrow 1$ independent f.f.
\Rightarrow form factor relations	L vector: $7 \rightarrow 2$ independent f.f.s

- \star corrections of $O(\lambda)$: also small components of either $\overline{q}_{
 m eff}$ or $Q_{
 m eff}$
 - $\Rightarrow \begin{array}{c} L \text{ pseudoscalar: } 2 \text{ independent f.f.s} \\ L \text{ vector: } 5 \text{ independent f.f.s} \end{array}$
- \star at $O(\lambda^2)$ no form factor relations left

Form factor relations at order λ

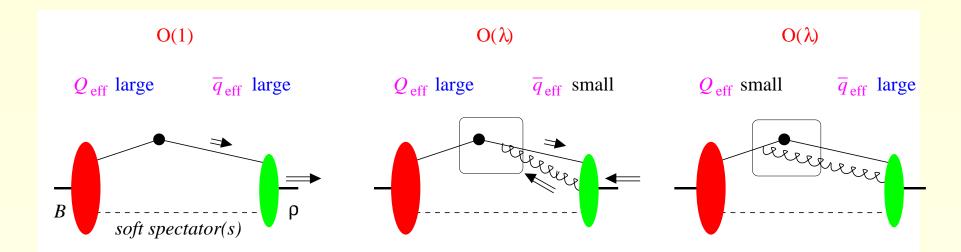
• caveat at order
$$\lambda = \sqrt{\Lambda_{
m QCD}/m_b}$$
 :



• $O(\lambda)$ operators involve different parton configurations of light meson than leading operators \rightarrow further suppression possible from meson wave functions cannot decide within SCET

Form factor relations at order λ

• caveat at order
$$\lambda = \sqrt{\Lambda_{
m QCD}/m_b}$$
 :



- $O(\lambda)$ operators involve different parton configurations of light meson than leading operators \rightarrow further suppression possible from meson wave functions cannot decide within SCET
- $O(\lambda)$ corrections violate helicity retention rule of [Burdman, Hiller, '00] size important for analysis of forw.-backw. asymmetry in $B \to K^* \ell^+ \ell^-$

5. Summary

- systematic treatment of power corrections in effective field theory formalism
- interactions between soft and collinear quarks and gluons: SCET
 - * general framework suitable for many different processes
 - \star effective Lagrangian known including $O(\lambda^2)$ corrections
- heavy-to-light decays at large recoil energy
 - \star effective Lagrangians from SCET and HQET
 - \star effective heavy-to-light current known including $O(\lambda^2)$ corrections
- transitions $B \rightarrow \text{light meson}$ (leading $O(\alpha_s)$, no hard spectator interactions)
 - * form factor relations reduce hadronic uncertainties in analysis of decays
 - * at $O(\lambda)$: 1 relation for pseudoscalar mesons, 2 relations for vector mesons at $O(\lambda^2)$: no relations left
 - \star further dynamical suppression at $O(\lambda)$ not ruled out