Branching Fraction and Properties of B meson Decays to Charmonium

Y. Watanabe Tokyo Institute of Technology For the Belle Collaboration

Contents

1. Introduction KEKB and Belle

Interest in $B \rightarrow$ charmonium decay

- 2. Search for Missing Charmonium states such as $\eta_{\rm C}(2S)$
- 3. Search for factorization-forbidden decays $B \rightarrow \chi_{C0} K, \chi_{C2} X$
- 4. Additional CP eigenstates (Cabibbo favored): $(b \rightarrow (c\bar{c})s)$
 - $B \to J/\psi K_1(1270), J/\psi K_2(1430), \eta_C K^*$

■ 5. Additional CP eigenstates(Cabibbo suppressed): $(b \rightarrow (c\bar{c}) d)$ $B^0 \rightarrow J/\psi \pi^0, J/\psi \rho^0$

■ 6. Branching Fractions of Exclusive Decays
 B→J/ψ K, η_C K, etc.
 ■ 7. Summary

Contents (2)

Luminosity vs. Energy of e⁺e⁻ colliders

1 Introduction (2)

Accelerator-Detectors at Luminosity Frontier as of summer 2002

Pe	ak lum.	Integrated Lum.		Start of
(10) ³³ cm ⁻² s ⁻¹)	(fb ⁻¹ d ⁻¹)	(fb⁻¹)	operation
KEKB - Belle	7.35	0.41	89.6	1999 May
PEP-II - BaBar	4.6	0.31	93.8	1998 Oct.
CESR - CLEO	1.25	0.1	\sim 25	1979

1 Introduction (3)

KEKB

Asymmetric Energy e⁺e⁻collider (crucial for CP measurement) at Υ (4S) region (10.58GeV) e⁻: 8.0 GeV, 1.1A e+: 3.5 GeV, 2.6A finite angle crossing ± 11 mr World Highest Luminosity Design = 10^{34} cm⁻²s⁻¹ $\approx 11 BB$ pairs/sec

Luminosity at KEKB-Belle

1 Introduction (5)

Belle detector

Good Vertex Detection $|\Delta(z_{CP} - z_{flavor-tag})| \le 100 \mu \mathrm{m}$ Good Particle ID K/π separation up to 3.5 GeV/c Belle collaboration \sim 300 researchers (55 Institutes) from Australia, Austria, China, Germany, India, Japan, Korea, Philippines, Poland, Russia, Slovenia, Switzerland, Taiwan and **USA**

BELLE Detector

Belle and Logo

Asymmetric e⁺e⁻ collider producing *B*

- Interest in B decays to charmonium
- 1) Golden channels for CP Measurements: ϕ_1 (or β)
- 2) Best place to look for missing charmonium states such as $\eta_{C}(2S)$
- 3) Clean testing ground of Theoretical Ideas
 (QCD, NRQCD, HQET)
 charmonium states = singlet in color, isospin
 - and SU(3) quantities
- 4) Fundamental Quantities Branching fractions, etc.

Fundamentals of Analyses 1) Most of analyses are based on data of 29.4 fb⁻¹ : $(32M B\overline{B} pairs)$ (1/3 of $= N_{R} \times Br(B) \times Br(c\overline{c}) \times \varepsilon \approx O(100)$ data taken) 2) Number $\rho f_{(B^{\vee} \in \mathbb{P}^{3}, \overline{B}^{\circ})}$ $Br(B) \equiv Br(B \rightarrow (c\overline{c})X) \approx O(0.1\%)$ $Br(c\overline{c}) \equiv Br((c\overline{c}) \rightarrow \frac{\text{Reconstructable}}{\text{Final state}}) \approx O(1 \sim 5\%)$ $\varepsilon \equiv \varepsilon$ (recon.) $\approx O(10 \sim 30\%)$

3) Signals: look for peaks in:

$$M_{bc} = \sqrt{E_{beam}^2 - \vec{p}_{recon}^2}$$
 and $\Delta E = E_{recon} - E_{beam}$,
and $M(c\bar{c})$ or $\Delta M \equiv M((c\bar{c})\gamma) - M((c\bar{c}))$

2 Search for missing $c\overline{c}$ States (4)

$$\begin{array}{c} \eta_{\rm C}(2{\rm S}) \ ({\rm cont'd}) \\ Mass & \Gamma_{tot} \\ ({\rm MeV/c^2}) \ ({\rm MeV}) \\ \Psi_{40} \\ ({\rm MeV/c^2}) \\ ({\rm MeV/c^2}) \\ ({\rm MeV}) \\ \Psi_{40} \\$$

3 Factorization-Forbidden Decays

QCD expectation

Naïve Factorization Hypothesis:

$$A(B \to (c\overline{c})X) \propto \langle (c\overline{c}) | (\overline{c}_b c_b)_{V-A} | 0 \rangle \times \langle X | (\overline{q}_a b_a)_{V-A} | b \rangle$$

$$\Box > = 0 \text{ for } \chi_{C0} \text{ and } \chi_{C2} \text{ (CVC)}$$

$$\neq 0 \text{ (with soft gluon exchange)}$$

3 Factorization-Forbidden Decays (2)

3 Factorization-Forbidden Decays (3)

■ $B \rightarrow \chi_{C2}(3556) X \text{ cont'd}$

Momentum spectra: χ_{C1} , χ_{C2} little events at end point for χ_{C2} compared to χ_{C1} (c.f. $M(\chi_{C2})/M(\chi_{C1}) \approx 1.013$)

essentially no $B \rightarrow \chi_{C2} K$ (in contrast to $B \rightarrow \chi_{C1} K$)

Decay modes so far used for CP fitting

$$\begin{split} \xi_{f} &= -1 \\ B_{CP} \to J/\psi \left(\to l^{+}l^{-} \right) K_{S} \left(\pi^{+}\pi^{-} \& \pi^{0}\pi^{0} \right) : 3.8 \times 10^{-4} \\ &\psi (2S) \left(\to l^{+}l^{-}, J/\psi \ \pi^{+}\pi^{-} \right) K_{S} \\ \chi_{C1} \left(\to J/\psi \ \gamma \right) K_{S} \\ \eta_{C} \left(\to K_{S} K^{\pm} \pi^{\mp}, K^{+} K^{-} \pi^{0} \right) K_{S} \end{split}$$

$$\begin{aligned} \xi_f &= +1 \\ B_{CP} \to J/\psi \left(\to l^+ l^- \right) K_L (\text{direction}) \\ J/\psi K^* \left(\to K_S \pi^0 \right) : \left(81\% \xi_f = +1 \right) \end{aligned}$$

Cabbibo favored Decays: $b \rightarrow (c\overline{c})s$

Nicola Cabibbo

4 Additional CP eigenstates:
$$b \rightarrow (c\bar{c}) s$$

PRL:87, 161601(2001)
 $B \rightarrow J/\psi K_1(1270)$ found $(data = 10.5 fb^{-1} : 11.2 \times 10^6 B\bar{B})$
 $\downarrow l^+l^- \downarrow K\pi\pi (CP \text{ mode} = K_{S,L}\rho^0)$
 $B_r(B^0 \rightarrow J/\psi K_1^0(1270)) = (1.30 \pm 0.34 \pm 0.32) \times 10^{-3}$
 $B_r(B^+ \rightarrow J/\psi K_1^+(1270)) = (1.80 \pm 0.34 \pm 0.39) \times 10^{-3}$
B signals in M_{bc} and ΔE
 $\int_{B_r}^{16} \int_{B_r}^{(b)} M(K\pi\pi)$

4 Additional CP eigenstates:
$$b \to (c\bar{c})s$$
 (2)
 $B \to J / \psi K_X^* (1430)$ found (Preliminary)
 $\downarrow l^+l^- \downarrow K\pi (CP \text{ mode } = K_{S,L}\pi^0)$

Angular analysis reveals large fraction of $K_2^*(1430)$ and a broad s wave component

(Significant longitudinal polarization)

4 Additional CP eigenstates: $b \rightarrow (c\overline{c})s$ (3)

•
$$B \to \eta_C K \text{ decay}$$

 $\downarrow K_S^0 K^+ \pi^-, K^+ K^- \pi^0, \overline{p}p, K^{*0} K^- \pi^+$
 $Br(B^+ \to \eta_C K^+) = (1.25 \pm 0.14^{+0.10}_{-0.12} \pm 0.38) \times 10^{-3}$
 $Br(B^0 \to \eta_C K^0) = (1.23 \pm 0.23^{+0.12}_{-0.16} \pm 0.38) \times 10^{-3}$

Clear B signals

• Cabibbo suppressed decays: $b \rightarrow (c\overline{c})d$

6 Branching Fractions of Exclusive decays 📿

	$B^+(z)$	$\times 10^{-4}$)	$B^{O}(>$	(10^{-4})
mode	PDG(2000) ^{>}	* Belle	PDG(2000)	* Belle
$\eta_C K$		$12.5 \pm 1.4^{+1.0}_{-1.2}$		$12.3 \pm 2.3^{+1.2}_{-1.6}$
$\eta_C K^*$				$16.2 \pm 3.2^{+2.4}_{-3.4}$
$J/\psi K$	10.0 ± 1.0	$10.1 \pm 0.3 \pm 0.8$	8.9 ± 1.2	$7.7 \pm 0.4 \pm 0.7$
$J/\psi K^*$	14.8 ± 2.7	$12.8 \pm 0.7 \pm 1.4$	15.0 ± 1.7	$12.9 \pm 0.5 \pm 1.3$
$J/\psi\pi$	0.51 ± 0.15	$0.52 \pm 0.07 \pm 0.07 \pm$	^t < 0.58	$0.18 \pm 0.06 \pm 0.02 $
$J/\psi\eta$				< 0.16#
$\psi(2S)K$	5.8 ± 1.0	$6.2 \pm 0.4 \pm 0.5$	< 8	$7.7 \pm 0.4 \pm 0.7$
$\chi_{C1}K$	10 ± 4	$6.1 \pm 0.6 \pm 0.6$	< 27	$3.1 \pm 0.9 \pm 0.4$
$\chi_{C0}K$		$6.0^{+2.1}_{-1.8}\pm1.1$		

* : before Belle and BaBar

#: preliminary 30

 1)KEKB-Belle operating well (90fb⁻¹ up to now) opening a new frontier

• 2)Missing charmonium state: $\eta_c(2S)$ found

$$M = 3654 \pm 6 \pm 8 \mathrm{MeV}/c^2$$

 $\Gamma_{tot} < 55 MeV(90\% CL)$

(Consistent with theoretical expectations)

■ 3) Factorization-forbidden processes found $Br(B \to \chi_{C2} X) = (1.53^{+0.23}_{-0.28} \pm 0.26) \times 10^{-3}$ $Br(B \to \chi_{C0} K) = (0.6^{+0.21}_{-0.18} \pm 0.05 \pm 0.08) \times 10^{-3}$

- 4) Additional CP eigenstates: $b \to (c\overline{c})s$ $B \to J/\psi K_1(1270), J/\psi K_X^*(1430), \eta_C K^*$
- 5) Additional CP eigenstates: $b \to (c\overline{c})d$ $B \to J/\psi \pi, J/\psi \rho, \eta_{\rm C}\pi$
- 6) Branching Fractions of Exculsive decays7) Much more will come soon