

Jul 26, 2002 ICHEP02 @ Amsterdam

Electroweak Penguins Decays of *B* **Mesons** (page 1)

S. Nishida Kyoto Univ. - Contents

- 1. Introduction
- 2. $B \rightarrow K^*(892)\gamma$ [ABS 728, BELLE-CONF 239]
- 3. $B \rightarrow K_2^*(1430)\gamma$, $B \rightarrow K\pi\pi\gamma$ [ABS 711, BELLE-CONF 223]
- 4. $B \rightarrow \rho \gamma$, $B \rightarrow \omega \gamma$ [ABS 729, BELLE-CONF 240]
- 5. $B \to K^{(*)}\ell\ell$
- 6. $B \rightarrow X_s \ell \ell$ [ABS 730, BELLE-CONF 241]
- 7. Summary

Results are based on 60 fb⁻¹ ($65 \times 10^6 B\overline{B}$) data (except 3. with 29 fb⁻¹) taken by Belle.

Introduction

- $b \to s\gamma \ (b \to d\gamma)$ and $b \to s\ell\ell$: FCNC process
- lowest diagram: one loop penguin (or box) diagram
- sensitive to New Physics
- $B \rightarrow K^*(892)\gamma$: rate difference between charged and neutral decay, charge asymmetry ($A_{\rm CP} > 1\%$ may be a sign of New Physics)
- $B \rightarrow K\pi\pi\gamma$: photon helicity (M.Gronau *et al.* PRL **88**, 051802 (2002))
- $B \rightarrow \rho \gamma, B \rightarrow \omega \gamma : b \rightarrow d \gamma, |V_{td}/V_{ts}|^2$
- $B \to K^{(*)}\ell\ell$, $B \to X_s\ell\ell$: branching fractions, $M_{\ell\ell}$ spectrum, forward-backward asymmetry

Jul 26, 2002 ICHEP02 @ Amsterdam $B \to K^*(892)\gamma$

Precision measurement of $B \to K^* \gamma$

- Reconstruct K^* from $K^+\pi^-$, $K_{S}\pi^{+}, K^{+}\pi^{0}, K_{S}\pi^{0}$ $(|M(K\pi) - M_{K^*}| < 75 \text{ MeV}/c^2)$
- Main background : $q\bar{q}$ LR from SFW (fisher discriminant of modified FW moments) and $\cos\theta_B$.
- Small BB background contamination:
- rare B decay $(B \rightarrow K^* \pi^0 \text{ etc})$
- $B \rightarrow K^* \pi \gamma, K \rho \gamma$
- Yield from beam constrained mass $(M_{\rm bc})$

Jul 26, 2002 ICHEP02 @ Amsterdam

Electroweak Penguins Decays of *B* **Mesons** (page 4)

 $B \to K^*(892)\gamma$

Charge asymmetry

$$A_{\rm CP} = \frac{1}{1 - 2w} \frac{N(\bar{B}) - N(B)}{N(\bar{B}) + N(B)}$$

- wrong tag fraction (w) is 0.9% for the neutral mode, and negligible for the charged mode.
- No asymmetry found in an inclusive K^* sample (< 1.5%).

 $A_{\rm CP}(K^*\gamma) = (-2.2 \pm 4.8 \pm 1.7)\%$ $A_{\rm CP}(K^{*0}\gamma) = (-6.1 \pm 5.9 \pm 1.8)\%$ $A_{\rm CP}(K^{*\mp}\gamma) = (+5.3 \pm 8.3 \pm 1.6)\%$

 $-10.6\% < A_{\rm CP}(K^*\gamma) < 6.2\%$ (90% C.L.)

Jul 26, 2002 ICHEP02 @ Amsterdam

Electroweak Penguins Decays of *B* **Mesons** (page 5)

 $ho B \to K_2^*(1430)\gamma, B \to K\pi\pi\gamma$

 $B \to K_2^*(1430)\gamma$, $B \to K\pi\pi\gamma$ with 29fb⁻¹. Submitted to PRL (BELLE-CONF 223).

 $K^*\pi\gamma$ and $K\rho\gamma$ are dominant.

Jul 26, 2002 ICHEP02 @ Amsterdam

Electroweak Penguins Decays of *B* **Mesons** (page 6)

 $\rho B \rightarrow \rho \gamma, \ B \rightarrow \omega \gamma$

Analysis of $B\to\rho\gamma\text{, }B\to\omega\gamma$

- $|M(\pi\pi) M_{\rho}| < 150 \text{ MeV}/c^2$
- $|M(\pi^+\pi^-\pi^0) M_\omega| < 15 \text{ MeV}/c^2$
- $q\bar{q}$ background \Longrightarrow LR cut
- K^* veto for $B \to \rho \gamma$
 - (to suppress $B \to K^* \gamma$ background)
- Tight kaon ID
- Reject if $|M(K\pi) M_{K^*}| < 50 \text{ MeV}/c^2$ with a K mass hypothesis.
 - $\implies 0.9 \pm 0.2 \ K^* \gamma \text{ contribution for } \rho^0 \gamma$ negligible $K^* \gamma$ contribution for $\rho^+ \gamma$
- \bullet Unbinned maximum likelihood fit for $M_{\rm bc}$ and ΔE

 $B \rightarrow \rho \gamma, \ B \rightarrow \omega \gamma$

Jul 26, 2002 ICHEP02 @ Amsterdam

Electroweak Penguins Decays of *B* **Mesons** (page 8)

S. Nishida Kyoto Univ.

 $-B \to K^{(*)}\ell\ell$

Analysis of $B \to K^{(*)}\ell\ell$ ($\ell = e, \mu$)

- hadronic system: K^+ , K_S , K^* (from $K^+\pi^-, K_S\pi^+, K^+\pi^0$)
- background suppression
- LR from Virtual Calorimeter and $\cos \theta_B$ to suppress $q\bar{q}$ background.
- LR from missing energy (E_{miss}) and $\cos \theta_B$ to suppress $B\bar{B}$ background (semi-leptonic decay)
- $B \to K^{(*)}hh$ background (cf. $X_s \ell \ell$ analysis) expectation of 0.32 ± 0.03 (0.21 ± 0.02) events in $K \mu \mu$ ($K^* \mu \mu$)
- J/ψ , ψ' veto
- signal extraction from $M_{\rm bc}$ fit (signal shape is modeled by $B \to J/\psi K^{(*)}$)

 $\sim B \to K^{(*)}\ell\ell$

Jul 26, 2002 ICHEP02 @ Amsterdam

Electroweak Penguins Decays of *B* **Mesons** (page 10)

Electroweak Penguins Decays of *B* **Mesons** (page 11)

S. Nishida Kyoto Univ. $-B \to X_s \ell \ell$

Analysis of inclusive $B \to X_s \ell \ell$ ($\ell = e, \mu$)

- Pseudo-reconstruction
- Hadronic system X_s : $K(K^+ \text{ or } K_S) + 0$ to 4 π (up to 1 π^0)
- backgrounds : $q\bar{q}$, $B\bar{B}$, $J/\psi(\psi')X$, X_shh ($K+n\pi$)
- Main background : $q\bar{q}$, $B\bar{B}$ (semi-leptonic)
- SFW
- Fisher discriminant of total visible energy and missing mass
- Likelihood ratio from ΔE and $\cos\theta_B$
- Tight J/ψ , ψ' veto
- Best candidate selection using $LR(\Delta E, \cos \theta_B)$
- $M_{X_s} < 2.1 \,\,{\rm GeV}/c^2$
- Signal yield from $M_{\rm bc}$ fit.

$B \to X_s \ell \ell$ -

$B \rightarrow X_s hh \ (K + n\pi) \ \text{background}$

- If we doubly mis-identify π as μ , decays like $B \to K + n\pi + \pi^+\pi^-$ contaminate $X_s\mu\mu$ mode.
- To estimate this contribution:
- Reconstruct $B \rightarrow X_s \pi^+ \pi^-$ without lepton ID requirement.
- Multiply (momentum-dependent) muon fake rate (1.4% in average).

Jul 26, 2002 ICHEP02 @ Amsterdam

Electroweak Penguins Decays of *B* **Mesons** (page 13)

Jul 26, 2002 ICHEP02 @ Amsterdam

Electroweak Penguins Decays of *B* **Mesons** (page 14)

S. Nishida Kyoto Univ. $-B \to X_s \ell \ell$

Model

- Separate models for $K^{(*)}\ell\ell$ and $X_s\ell\ell$ ($M_{X_s}>1.1~{
 m GeV}/c^2$)
- For $K^{(*)}\ell\ell$,
- Ali et al. PR**D61**, 074024 (2000) for $M_{\ell\ell}$ spectrum (NNLO)
- For $X_s \ell \ell$,
- $M_{\ell\ell}$ and M_{X_s} spectra are taken from a series of work by Ali *et al.* based on NNLO and Fermi motion model (hep-ph/0112300, PR**D61**, 074024 and PR**D55**, 4105)
- $M_{\ell\ell} > 0.2 \ {
 m GeV}/c^2$ to remove virtual photon contribution and $\pi^0 \to ee\gamma$, photon conversion backgrounds

Model uncertainties

- Fraction of $K^{(*)}\ell\ell$ components
- taken from SM predictions
- p_F (Fermi momentum) and m_q (spectator quark mass)
- to match the CLEO's λ_1 and $\overline{\Lambda}$

 $-B \rightarrow X_s \ell \ell$

Di-lepton mass $(M_{\ell\ell})$ and recoil mass (M_{X_s}) spectrum

- Agreement with the SM expectation.
- Consistent with the exclusive analysis.
- $B \to K \ell \ell$ is clearly seen.
- $B \to K^* \ell \ell$ is not significant.
- Signal for $M_{X_s} > M_{K^*}$ is seen!

– Summary

Radiative ${\cal B}$ decays

$$\begin{aligned} \mathcal{B}(B^{0} \to K^{*}(892)^{0}\gamma) &= (39.1 \pm 2.3 \pm 2.5) \times 10^{-6} \\ \mathcal{B}(B^{+} \to K^{*}(892)^{+}\gamma) &= (42.1 \pm 3.5 \pm 3.1) \times 10^{-6} \\ A_{\rm CP}(K^{*}\gamma) &= (-2.2 \pm 4.8 \pm 1.7)\% \\ \mathcal{B}(B^{0} \to \rho^{0}\gamma) &< 2.6 \times 10^{-6} \quad (90\%{\rm C.L.}) \\ \mathcal{B}(B^{+} \to \rho^{+}\gamma) &< 4.9 \times 10^{-6} \quad (90\%{\rm C.L.}) \\ \mathcal{B}(B^{0} \to \omega\gamma) &< 3.1 \times 10^{-6} \quad (90\%{\rm C.L.}) \end{aligned}$$

- New precision measurements on $B \to K^* \gamma$ No significant difference between charged and neutral decay rates.
- No charge asymmetry in $B \to K^* \gamma$.
- $B^0 \to K_2^*(1430)^0 \gamma$, $B^+ \to K^+ \pi^- \pi^+ \gamma$ are measured.
- Upper limit on $B\to\rho\gamma$, $\omega\gamma$ decays.

Summary

 $b \rightarrow s \ell \ell$ decays

	\mathcal{B} (×10 ⁻⁷)	signif.
$X_s ee$	$50 \pm 23 {}^{+12}_{-11}$	3.4
$X_s \mu \mu$	$79 \pm 21 {}^{+20}_{-15}$	4.7
$X_s\ell\ell$	$61 \pm 14 {}^{+13}_{-11}$	5.4
K^*ee	< 24	
$K^*\mu\mu$	< 12	
$K^*\ell\ell$	< 14	
Kee	$3.8^{+2.1}_{-1.7} \pm 0.6$	2.7
$K\mu\mu$	$8.0^{+2.8}_{-2.3}\pm0.8$	4.9
$K\ell\ell$	$5.8^{+1.7}_{-1.5} \pm 0.6$	5.4

- First measurement of $B \to X_s \ell \ell$
- Agree with SM expectation To be used to constrain New Physics.
- Experiments finally reached to the level of SM expectation.

Jul 26, 2002 ICHEP02 @ Amsterdam

Electroweak Penguins Decays of *B* **Mesons** (page 18)