

The b semileptonicbrenching ratio in $\mathbb{Z} \rightarrow b \bar{b}$ decays

b $\quad{ }^{c}$ s, AAlessia Tricomi
 University of Catania and INFN Bari \& Catania on behalf of LEP Collaborations

Inclusive sensjepiosjic bsanconjag fractions

cascade decay

ICHEP 'O2 - AM STERDAM, 24-31 July 2002
A lessia Tricom i, A LEPH Bari

Motivations

Measuring $\operatorname{BR}(B \rightarrow X \mid v)$

* Golden route to determine

$$
\operatorname{BR}(\mathrm{b} \rightarrow \mathrm{X} \mid v)=\frac{\Gamma(\mathrm{b} \rightarrow \mathrm{X} \mid v)}{\Gamma(\mathrm{b} \rightarrow \text { anything })} \tau_{\mathrm{b}}
$$

$$
\text { with } \Gamma(b \rightarrow X \mid v)=\gamma_{c}\left|\mathbf{V}_{c b}\right|^{2}+\gamma_{u}\left|\mathbf{V}_{u b}\right|^{2}
$$

* Test of the modelling of heavy hadron dynamics
* Input to many HF analysis
* Comparison to Y(4S) results

Measuring $\mathrm{BR}\left(\mathrm{b} \rightarrow \mathrm{c} \rightarrow \mathrm{X} \mathrm{I}^{+} v\right)$ * main bkg for $B R(b \rightarrow X \mid v)$

* also input to many HF analyses

Analysis techniques

Several measurement techniques used

 - Common to alll LEP experiments:

- Divide hadronic events in two hemispheres
- Use liffetime info to tag b hemispheress high b purity samples (395%)
- Look for leptons in the opposite hemispheres

Need to distinguish $\mathbf{b} \rightarrow \mathbf{X I - v}$ from other lepton sources

* $b \rightarrow c \rightarrow \mathrm{XI}^{+} v \quad$ (wrong sign cascade)

ALEPH, DELPHI, OPAL

* $\mathrm{b} \rightarrow \overline{\mathrm{c}} \rightarrow \mathrm{XI}^{-} v \quad$ (same sign cascade)
* $\mathbf{b} \rightarrow \tau^{-} \mathrm{X} \rightarrow \mathrm{I}^{-}$
* $c \rightarrow \mathrm{X}^{+} v$
* Bkg (leptons from J/ ψ. gluon splitting. misidentified leptons)

The key issue

First LEP analyses:

only lepton spectrum info used to distinmanal

Larae rlan- .

Presenti LEP analyses:
Use addifional inforissastions jo seduce ssuodel depenslensee (correlation of lepto
j) Jodel depedence reduced, bui, -im uible

New ALEPH result:
Two separate analyses (1. Iep' No NN combination used
New treatment of modelling
Fragmentation from ALEPH data
2. charge correlation estimators) iood check of systematic effects
\longrightarrow-onsistent results wrt usual treatment with completely different approach

ALEPH new $b \rightarrow X I v: p_{T}$ analysis

TAG Hemisphere (B sample)

Tight cut on lifetime-mass tag

Lepton Analysis Hemisphere
Identify leptons

I
Count them and use the p_{T} distribution to separate different components Study of lepton rate wrt p_{T} allows
$\mathrm{BR}(\mathrm{b} \rightarrow \mathrm{I})$ and $\mathrm{BR}(\mathrm{b} \rightarrow \mathrm{c} \rightarrow \mathrm{I})$ to be fitted simultaneously

$$
L=\frac{\underbrace{\frac{\mu_{1}}{} e^{-\mu 1}}_{\text {counting }}}{N_{1}!} \times \underbrace{\left[\Pi_{i} F\left(P_{i}\right)\right.}_{P_{T} \text { spectrum }}]
$$

Weighted sum Relative contributions of cascade and direct BR

Distinguish $\mathrm{b} \rightarrow$ wrt $\mathrm{b} \rightarrow \mathrm{c} \rightarrow$ l using charge correlation wrt other b hemisphere TAG Hemisphere
P^{P} sample: high P_{T} lepton ($1.25 \mathrm{GeV} / \mathrm{c}$)
Lepton Analysis Hemisphere

J sample: loose lifetime-mass tag+jet charge cut
Measure fraction of:
Opposite sign
Lepton charge
$Q_{\text {HEMI }}=f(j e t$ ch., i.p. signif.)
Same sign

ICHEP 'O2-AMSTERDAM, 24-31 July 2002
A lessia Tricom i, ALEPH Bari

ALEPH new $b \rightarrow X I \vee$ measurement

2 methods (3 tags used)

" p_{T} analysis": the p_{T} of the leptons respect to the jet axis used to separate components

Larger statistical power
But large dependence on $b \rightarrow X \mid v$ decay modelling and hence on the shape of the p_{T} spectrum
"charge correlation analysis": the correlation between lepton charge and charge estimators (hemisphere charge or high p_{T} lepton charge) in the
opposite hemisphere gives info about their relative proportions

Slightly worse statistical power
Reduced dependence on the $b \rightarrow X I v$ decay modelling
Mainly affected by the uncertainty in the rate of $b \rightarrow \bar{c} \rightarrow X I^{-} v$

Lepton spectrum extraction possible
"Standard" treatment:
Fit to CLEO data with ACCMM, ISGW and ISGW**.

Use

* ACCMM Model for central value
* ISGW and ISGW** for systematics

Since

The shape of the $\mathrm{B}^{0(+)} \rightarrow I$ spectrunt depends on the following rates:

1) $\mathrm{BR}(\mathrm{B} \rightarrow \mathrm{Dlv})=(1.95 \pm 0.27) \%$
2) $B R\left(B \rightarrow D^{*} \mid v\right)=(5.05 \pm 0.25) \%$
3) $B R\left(B \rightarrow D^{*} X \mid v\right)=(2.7 \pm 0.7) \%$
4) $B R\left(B \rightarrow D_{1} \mid v\right)=(0.63 \pm 0.11) \%$
B_{s} and b baryon production rates reweighted to latest experimental results and uncertainties in the modelling accounted by enlarging the uncertainties for B BR by 25%

New approach:

Reweight MAC for the measured paites Systematics: vary relative $D / D^{* / / D *}$ fraction by their errors

ALEP'f suew b $\rightarrow x$, v; decay issodellisg and fragmentation

Transverse Momentum Analysis

$$
11.07 \pm 0.07_{\text {stat }}^{(\%)} \pm 0.13_{\text {sys }} \pm 0.44_{\bmod }
$$

BR(b $\rightarrow c \rightarrow 1)$
7.52 ± 0.10 $0_{\text {stat }} \pm 0$

Charge correlation analysis
(\%)
$10.57 \pm 0.11_{\text {stat }} \pm 0.29_{\text {sys }} \pm 0.20_{\text {mod }}$ $8.30 \pm 0.16_{\text {stat }} \pm 0.21_{\text {sys }}{ }_{-0.16}^{+0.12} \mathrm{mod}$
Two different strategies used to measure $B R(b \rightarrow 1) \& B R(b \rightarrow c \rightarrow 1)$, combined only a posteriori

1. P_{T} analysis significantly affected by $(b \rightarrow l)$ modelling
2. Charge correlation analysis less model dependent but suffers for the uncertainty on the rate of $\mathrm{b} \rightarrow \mathrm{W} \rightarrow \bar{c} \rightarrow$ decay

Agreement between the two results is a crucial consistency check

Results averaged using B.L.U.E. technique
$B R(b \rightarrow l) \quad 10.70 \pm 0.10_{\text {stat }} \pm 0.23_{\text {sys }} \pm 0.26_{\text {mod }}$
$W\left(p_{T}\right)=0.25 \quad W(Q b)=0.75$
$\mathrm{BR}(\mathrm{b} \rightarrow \mathrm{c} \rightarrow \mathrm{l})$

In both cases new treatment for the $b \rightarrow 1$ modelling using measured rates of the different c hadrons in the final states

Consistent results with standard LEP approach

LEP $B R(b \rightarrow X \mid v)$ average

* Global fit to Heavy Flavours results

$R_{b}, B R(b \rightarrow l), B R(b \rightarrow c \rightarrow I), B R(c \rightarrow 1), \chi$

ALEPH avg NEW RESULT * common input parameter values and systematic definitions used by all experiments

* B.L.U.E. technique: take into account correlated systematics
* sample composition
$* b$ and c lifetimes
$* \mathrm{~B}^{+}, \mathrm{B}^{0}, \mathrm{~B}_{\mathrm{s}}, \Lambda_{\mathrm{b}}$ production fractions
$* g \rightarrow b b, g \rightarrow c c$
$\because b$ and c fragmentation
* Λ_{b} polarisation
* semileptonic decay models
uncertainty from the modelling of $b \rightarrow I$ dominates (0.15 of 0.23 total error)

$+1 \sigma$	ISGW	$11 \% D^{* *}$
central	ACCMM tuned to CLEO data	
-1σ	ISGW**	$33 \% D^{* *}$

The sum of exclusive semileptonic $B R$ agrees with the inclusive within $\sim 1.5 \sigma$
$\overline{\mathrm{B}} \rightarrow X \mathrm{I}^{-} \overline{\bar{v}}(\mathrm{CLEO}+\mathrm{ARGUS})^{*}$
$\overline{\mathrm{~B}} \rightarrow X \mathrm{I}^{-} \overline{\mathrm{V}}(\mathrm{BABAR})_{\text {prel }}$
$\overline{\mathrm{B}} \rightarrow X X \mathrm{I}^{-} \overline{\mathrm{V}}(\mathrm{BELLE})_{\text {prel }}$
$\mathrm{B} \rightarrow X \mathrm{I}^{-} \overline{\mathrm{v}}(\mathrm{Y}(4 S))$
10.38 ± 0.32
10.87 ± 0.35
$\bar{B} \rightarrow \times 1^{-} \bar{v}$ (BELLE) prel $\quad 10.90 \pm 0.52$
10.63 ± 0.25
$b \rightarrow$ X $^{-} v($ LEP $) \quad 10.65 \pm 0.23$
$B \rightarrow$ D $^{-} v^{*} \quad 2.13 \pm 0.22$
$B \rightarrow D^{*} I^{-} v^{*} \quad 5.05 \pm 0.25$
$B \rightarrow D^{(*)} \pi I^{-} v^{*}$
2.26 ± 0.44
$\mathrm{B} \rightarrow \mathrm{D}_{1}{ }^{0} \mathrm{I}^{-v} \mathrm{X}^{*} \quad 0.74 \pm 0.16$
$B \rightarrow$ XI- $v^{*}<0.6590 \%$ CL

*PDG values	$\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \mathrm{I}^{-} v$	0.17 ± 0.05
	Total B exclusive	9.61 ± 0.55

ICHEP 'O2-AMSTERDAM, 24-31 July 2002

LEP $b \rightarrow c \rightarrow X \mid \vee$ average

* Global fit to Heavy Flavour results from LEPEWWG

* Large uncertainties from $b \rightarrow$ l modelling
* Statistical error sizeable

Conclusions

* LEP has measured $\operatorname{BR}(b \rightarrow I)$ and $\operatorname{BR}(b \rightarrow c \rightarrow I)$ with several techniques

$$
\begin{array}{ll}
\mathrm{BR}(\mathrm{~b} \rightarrow \mathrm{l}) & 0.1065 \pm 0.0009_{\text {stat }} \pm 0.0015_{\text {sys }} \pm 0.0015_{\bmod }\left(0.0026_{\text {ALEPH mod }}\right) \\
\mathrm{BR}(\mathrm{~b} \rightarrow \mathrm{c} \rightarrow \mathrm{l}) & 0.804 \pm 0.0012_{\text {stat }} \pm 0.0013_{\text {sys }} \pm 0.0009_{\text {mod }}
\end{array}
$$

* Average results are consistent with Y(4S) measurements

$$
\begin{aligned}
& \left.\operatorname{BR}(B \rightarrow X \mid v)\right|_{L E P}=\operatorname{BR}(B \rightarrow X \mid v) \times \tau_{\mathrm{B}} / \tau_{\mathrm{b}}=0.1082 \pm 0.0023 \\
& \left.\operatorname{BR}(\mathrm{~B} \rightarrow X \mid v)\right|_{\mathrm{Y}(45)}=0.1063 \pm 0.0025
\end{aligned}
$$

* A careful investigation of systematic errors due to modelling and fragmentation model has been done
: New measurements from ALEPH which use a different approach for the $(b \rightarrow I)$ modelling and have no fragmentation model dependence give results consistent with the usual LEP treatment. This can be considered as a cross-check of the robustness of the analyses.

ALEPH new $b \rightarrow X I v$: systematics

> Charge correlation
> $B R(b \rightarrow c b a r \rightarrow I)=-0.223$
> b frag $=-0.089$
> $b \rightarrow I \bmod =0.202$
> $c \rightarrow I \bmod =-0.038+0.021$
> $b \rightarrow D$ mod $=$ neg 1

Lepton p_{T} analysis
 $\mathrm{BR}(\mathrm{b} \rightarrow \mathrm{cbar} \rightarrow \mathrm{I})=0.010$
 b frag $=-0.074$

$b \rightarrow I \bmod =0.426$
$c \rightarrow I \bmod =-0.087+0.072$
$b \rightarrow D \bmod =-0.072+0.060$

ALEPH new $b \rightarrow c \rightarrow X I$ v: systematics

Charge correlation
 (in units of 10^{-2})
 $\mathrm{BR}(\mathrm{b} \rightarrow$ cbar $\rightarrow \mathrm{I})=-0.039$

b frag $=-0.101$
$b \rightarrow I \bmod =0.085$
$c \rightarrow I \bmod =-0.117+0.063$
$b \rightarrow D \bmod =+0.058-0.050$

Lepton p_{T} analysis (in units of 10^{-2})
$\mathrm{BR}(\mathrm{b} \rightarrow \mathrm{cbar} \rightarrow \mathrm{I})=-0.407$
b frag $=-0.120$
$b \rightarrow I \bmod =0.348$
$c \rightarrow I \bmod =-0.037+0.020$
$b \rightarrow D \bmod =-0.055+0.049$

ALEPH new $b \rightarrow X I v$ ：systematics

Source	$\Delta[\mathrm{BR}(\mathrm{b} \rightarrow \mathrm{X} \mathrm{\ell} \mathrm{\nu})]$		$\Delta[\mathrm{BR}(\mathrm{b} \rightarrow \mathrm{c} \rightarrow \mathrm{X} \ell \nu)]$	
	$P \perp$	Charge	$P \perp$	Charge
R_{b}	negl．	negl．	negl．	negl．
R_{c}	± 0.005	∓ 0.007	∓ 0.002	± 0.017
$N(\mathrm{~g} \rightarrow \mathrm{~b} \overline{\mathrm{~b}})$	∓ 0.002	∓ 0.002	∓ 0.002	∓ 0.001
$N(g \rightarrow c c)$	∓ 0.001	∓ 0.006	∓ 0.014	∓ 0.006
electron ID efficiency	∓ 0.063	∓ 0.081	∓ 0.087	∓ 0.056
γ conversions	± 0.003	∓ 0.006	∓ 0.022	∓ 0.008
electron bkg	± 0.004	∓ 0.007	∓ 0.026	∓ 0.009
muon ID efficiency	± 0.065	± 0.063	± 0.039	± 0.039
muon bkg	± 0.002	∓ 0.013	∓ 0.037	∓ 0.015
$\left.\mathrm{BR}(\mathrm{b} \rightarrow \mathrm{c} \rightarrow \mathrm{XEV})\right\|_{2}$	± 0.004	± 0.022	± 0.002	干 0.026
$\mathrm{BR}\left(\mathrm{b} \rightarrow \mathrm{J} / \psi^{\prime}\left(\psi^{\prime}\right) \rightarrow \varepsilon \ell\right)$	negl．	negl．	negl．	negl．
$\mathrm{BR}(\mathrm{b} \rightarrow \tau \rightarrow \ell)$	干 0.017	∓ 0.043	∓ 0.053	∓ 0.011
$\mathrm{BR}(\mathrm{b} \rightarrow \mathrm{W} \rightarrow \mathrm{c} \rightarrow \ell)$	± 0.010	∓ 0.223	∓ 0.407	∓ 0.039
$\mathrm{BR}(\mathrm{c} \rightarrow \mathrm{Xe} \mathrm{\nu})$	negl．	干 0.016	∓ 0.009	± 0.016
$\mathrm{BR}\left(\mathrm{b} \rightarrow \mathrm{X}_{\mathrm{u}} \varepsilon\right)$	∓ 0.032	∓ 0.022	± 0.013	∓ 0.004
b fragmentation	∓ 0.074	∓ 0.089	∓ 0.120	∓ 0.101
c fragmentation	± 0.001	± 0.005	negl．	∓ 0.005
ϵ_{c} sample \boldsymbol{B}	± 0.027	± 0.015	∓ 0.009	∓ 0.010
$\epsilon_{\text {uds }}$ sample \mathcal{B}	± 0.015	± 0.016	± 0.012	± 0.011
ϵ_{c} sample \mathcal{J}	－	∓ 0.018	－	± 0.029
$\epsilon_{\text {uds }}$ sample \mathcal{J}	－	negl．	－	negl．
ϵ_{c} sample \mathcal{P}	－	干 0.012	－	± 0.019
$\epsilon_{\text {uds }}$ sample \mathcal{P}	－	negl．	－	negl．
c charge tag rate	－	± 0.036	－	∓ 0.057
b charge tag rate	－	± 0.069	－	∓ 0.109
Mixing in $\mathrm{b} \rightarrow$ Xév	－	± 0.035	＝	∓ 0.055
Mixing in $\mathrm{b} \rightarrow \mathrm{c} \rightarrow$ Xev	＝	∓ 0.055	－	± 0.087
bkg charge correlation	－	± 0.027	－	∓ 0.043
b tag－lept correlation	± 0.006	干 0.007	干 0.025	干 0.005

ALEPH new $b \rightarrow X I v$: IepID

Muons:

- $|\cos \theta|<0.69$
-1 VDET Hit
- 1 dO | 2.5 mm
- Efficiency from $Z \rightarrow \mu \mu$ when $p>4 \mathrm{GeV}$ from $\gamma \rightarrow \mu \mu$ when $2.5<p<4 \mathrm{GeV}$

Electrons:

- $p>2 \mathrm{GeV}$
-Pad dE/dx info
- No cut on wires Larger efficiency with no dependence on P_{t}

$d E / d X>-2$ for both.

Reduces K bkg in the muon sample
-ECAL efficiency like in the past

$$
F_{b}=1-\left(R_{c} \varepsilon_{c}+R_{x} \varepsilon_{y}\right) / F_{1}
$$ $F_{1}=$ fraction of Small:from MC single tagged hemispheres in $F_{b}=$ fraction of b hemi the data in the data

Systematics from

 ε_{c} and ε_{x} estimated for each sampleSample 1 Sample 2
Sample 3

b purity

 97\% 87\% 90\%
efficiency

32\% 32\% 12\%
$=$ ALEPH new $b \rightarrow X I v$: charge tag rate
$P_{b}=$ charge tag rate is measured by using double tag method

Count fraction of events with opposite charge hemispheres in data

Correct for hemisphere correlations and udsc contribution from MC

Extract P_{b}

ALEPH new $b \rightarrow X I v$: charge tag rate

Extract $\mathrm{F}_{\mathrm{b}}{ }^{\text {oc }}$ from data:
From MC
$F^{\circ c}($ data $)=\frac{R_{b} \varepsilon_{b}{ }^{2} F_{b}{ }^{\circ c}+R_{c} \varepsilon_{c}^{2} F_{c}^{o c}+R_{x} \varepsilon_{x}^{2} F_{x}{ }^{o c}}{R_{b} \varepsilon_{b}{ }^{2}+R_{c} \varepsilon_{c}^{2}+R_{x} \varepsilon_{x}^{2}}$

From double tagged hemisphere fraction

$$
F_{2}=R_{b} \varepsilon_{b}^{2}+R_{c} \varepsilon_{c}^{2}+R_{x} \varepsilon_{x}^{2}
$$

$P_{b}=$ prob. of tagging the b charge
$F_{b}{ }^{\circ c}=\underbrace{P_{b}^{2}\left(1+\rho_{1}\right)}_{\text {Right-right }}+(\underbrace{\left.1-P_{b}\right)^{2}\left(1+\rho_{2}\right.}_{\text {Wrong-wrong }}) \rightarrow P_{b}$
$P_{b}, P_{c} P_{x}$ are used to build the charge spectra $P_{c} P_{x}$ taken from $M C$

ALEPH new $b \rightarrow X I v$: charge tag rate

Tag rates measured from data:

- 1) jet charge - lepton correlation
- 2) lepton - lepton correlation

$$
\begin{aligned}
& P^{1}{ }_{b}=0.73 \\
& P_{b}^{2}=0.81
\end{aligned}
$$

a) P_{b} has a statistical error from data (double tagged hemispheres)

This statistical error is propagated in the measurement Then \oplus to statistical error from the fit
b) Systematic error on P_{b} due to correlation ρ_{1} and ρ_{2} between tag probabilities Typical MC values for ρ_{1} and ρ_{2} 2.3-2.6\%.

Set ρ_{1} and ρ_{2} to zero and take half the shift

