ICHEP 02

Am sterdiam , 24 - 31 July 2002

INFN

Measuring BR(b \rightarrow X I v) * Golden route to determine $|V_{cb}|$ (M. Battaglia talk, CP2 session) * Test of the modelling of heavy hadron dynamics * Input to many HF analysis * Comparison to Y(4S) results $BR(b \rightarrow X \mid v) = \frac{\Gamma(b \rightarrow X \mid v)}{\Gamma(b \rightarrow anything)} \quad \tau_{b}$

with
$$\Gamma(b \rightarrow X | v) = \gamma_c |V_{cb}|^2 + \gamma_u |V_{ub}|^2$$

BRCS - + M

Measuring BR(b \rightarrow c \rightarrow X I⁺ v) * main bkg for BR(b \rightarrow X I v) * also input to many HF analyses

Analysis techniques

DELPHI

- * $b \rightarrow \overline{c} \rightarrow X \downarrow v$
- * **b** $\rightarrow \tau^{-}X \rightarrow I^{-}$
- \bullet c \rightarrow X \vdash v

INFN

* Bkg (leptons from J/ψ , gluon splitting, misidentified leptons)

INFN

First LEP analyses: only lepton spectrum info used to distinguist different company.

Large dependence on modelling of 6 fragmentation and decay

Present LEP analyses:

Use additional information to reduce model dependence (correlation of lepton charge with opposite hemisphere charge estimators)

Model depedence reduced, but the Lable

New ALEPH result: Two separate analyses (1. lep No NN combination used New treatment of modelling

Fragmentation from ALEPH data

2. charge correlation estimators) ood check of systematic effects onsistent results wrt usual treatment with completely different approach No dependence on fragmentation model

2 methods (3 tags used)

" p_T analysis": the p_T of the leptons respect to the jet axis used to separate components "charge correlation analysis": the correlation between lepton charge and charge estimators (hemisphere charge or high p_T lepton charge) in the opposite hemisphere gives info about their relative proportions

Larger statistical power

But large dependence on $b\to X \mid \nu$ decay modelling and hence on the shape of the p_T spectrum

Slightly worse statistical power

Reduced dependence on the b \rightarrow X l ν decay modelling Mainly affected by the uncertainty in the rate of b $\rightarrow \overline{c} \rightarrow X I^{-} \nu$

Lepton spectrum extraction possible

The sum of exclusive semileptonic BR agrees with the inclusive within ~1.5 σ $\overrightarrow{B} \rightarrow X \overrightarrow{I} \overrightarrow{v}$ (CLEO+ARGUS)* 10.38 ± 0.32 $\overrightarrow{B} \rightarrow X \overrightarrow{I} \overrightarrow{v}$ (BABAR) _{prel} 10.87 ± 0.35 $\overrightarrow{B} \rightarrow X \overrightarrow{I} \overrightarrow{v}$ (BELLE) _{prel} 10.90 ± 0.52 $\overrightarrow{B} \rightarrow X \overrightarrow{I} \overrightarrow{v}$ (Y(4S)) 10.63 ± 0.25 $\overrightarrow{b} \rightarrow X \overrightarrow{I} \overrightarrow{v}$ (LEP) 10.65 ± 0.23 $\overrightarrow{B} \rightarrow D \overrightarrow{I} \overrightarrow{v} \ast$ 2.13 ± 0.22 $\overrightarrow{B} \rightarrow D^* \overrightarrow{I} \overrightarrow{v} \ast$ 2.26 ± 0.44 $\overrightarrow{B} \rightarrow D_1^{\circ} \overrightarrow{v} \overrightarrow{x} \ast$ 0.74 ± 0.16 $\overrightarrow{B} \rightarrow X \overrightarrow{I} \overrightarrow{v}$ 0.17 ± 0.05 $\overrightarrow{F} \rightarrow D \overrightarrow{I} \overrightarrow{v} \ast$ 0.17 ± 0.05	INFN Istituto Nazionale di Fisica Nucleare	$(b \rightarrow X \mid v)$						
agrees with the inclusive within ~1.5 σ $\overrightarrow{B} \rightarrow X \downarrow^{-} \overrightarrow{v} (CLEO + ARGUS)^{*}$ 10.38 ± 0.32 $\overrightarrow{B} \rightarrow X \downarrow^{-} \overrightarrow{v} (BABAR)_{prel}$ 10.87 ± 0.35 $\overrightarrow{B} \rightarrow X \downarrow^{-} \overrightarrow{v} (BELLE)_{prel}$ 10.90 ± 0.52 $\overrightarrow{B} \rightarrow X \downarrow^{-} \overrightarrow{v} (Y(4S))$ 10.63 ± 0.25 $\overrightarrow{b} \rightarrow X \downarrow^{-} \cancel{v} (LEP)$ 10.65 ± 0.23 $\overrightarrow{B} \rightarrow D \downarrow^{-} \cancel{v}^{*}$ 2.13 ± 0.22 $\overrightarrow{B} \rightarrow D^{+} \downarrow^{-} \cancel{v}^{*}$ 2.26 ± 0.44 $\overrightarrow{B} \rightarrow D_{1}^{0} \downarrow^{-} \cancel{v} X^{*}$ 0.74 ± 0.16 $\overrightarrow{B} \rightarrow X \downarrow^{-} \cancel{v}$ 0.17 ± 0.05 $\overrightarrow{F} \rightarrow D^{0} \downarrow^{-} \cancel{v}$	The sum of exclusive semileptonic BR							
$ \begin{array}{ccccc} \bar{B} \rightarrow X \vdash \bar{\nu} & (BABAR)_{prel} & 10.87 \pm 0.35 \\ \bar{B} \rightarrow X \vdash \bar{\nu} & (BELLE)_{prel} & 10.90 \pm 0.52 \\ \bar{B} \rightarrow X \vdash \bar{\nu} & (Y(4S)) & 10.63 \pm 0.25 \\ \hline{b} \rightarrow X \vdash \nu & (LEP) & 10.65 \pm 0.23 \\ \hline{b} \rightarrow D \vdash \nu & 2.13 \pm 0.22 \\ \bar{B} \rightarrow D^* \vdash \nu & 5.05 \pm 0.25 \\ \bar{B} \rightarrow D^{(*)} \pi \vdash \nu & 2.26 \pm 0.44 \\ \hline{B} \rightarrow D_1^0 \vdash \nu X^* & 0.74 \pm 0.16 \\ \bar{B} \rightarrow X \vdash \nu & 2.15 \pm 0.25 \\ \hline{b} \rightarrow X \vdash \nu & 0.17 \pm 0.05 \\ \end{array} $ *PDG values $\begin{array}{c} \bar{B} \rightarrow X_u \vdash \nu & 0.17 \pm 0.05 \\ \hline{B} \rightarrow X_u \vdash \nu & 0.17 \pm 0.05 \\ \hline{B} \rightarrow D_1 $	agrees with th	10 38 + 0 32						
$ \begin{array}{cccc} \overline{B} \rightarrow X \ \overline{I} & \overline{\nu} \ (BELLE)_{prel} & 10.90 \pm 0.52 \\ \overline{B} \rightarrow X \ \overline{I} & \overline{\nu} \ (Y(4S)) & 10.63 \pm 0.25 \\ \hline b \rightarrow X \ \overline{I} & \nu \ (LEP) & 10.65 \pm 0.23 \\ \hline b \rightarrow X \ \overline{I} & \nu \ (LEP) & 10.65 \pm 0.23 \\ \hline B \rightarrow D \ \overline{I} & \nu * & 2.13 \pm 0.22 \\ \overline{B} \rightarrow D^* \ \overline{I} & \nu * & 5.05 \pm 0.25 \\ \overline{B} \rightarrow D^{(*)} \ \pi \ \overline{I} & \nu * & 2.26 \pm 0.44 \\ \hline B \rightarrow D_1^0 \ \overline{I} & \nu \ X^* & 0.74 \pm 0.16 \\ \hline B \rightarrow X \ \overline{I} & \nu^* & < 0.65 \ 90\% \ CL \\ \hline B \rightarrow X_u \ \overline{I} & \nu & 0.17 \pm 0.05 \\ \hline \end{array} $		$\overline{B} \rightarrow X I^- \overline{v} (BABAR)_{mal}$	10.87 ± 0.35					
$B \rightarrow X \vdash \overline{v} (Y(4S))$ 10.63 ± 0.25 $b \rightarrow X \vdash v (LEP)$ 10.65 ± 0.23 $B \rightarrow D \vdash v*$ 2.13 ± 0.22 $B \rightarrow D^* \vdash v*$ 5.05 ± 0.25 $B \rightarrow D^{(*)} \pi \vdash v*$ 2.26 ± 0.44 $B \rightarrow D_1^{0} \vdash v X^*$ 0.74 ± 0.16 $B \rightarrow X \vdash v^*$ $< 0.65 90\% CL$ *PDG values		$\overline{B} \rightarrow X I^- \overline{v} (BELLE)_{prel}$	10.90 ± 0.52					
$\begin{array}{cccc} b \rightarrow X \vdash v \text{ (LEP)} & 10.65 \pm 0.23 \\ \hline B \rightarrow D \vdash v * & 2.13 \pm 0.22 \\ B \rightarrow D^* \vdash v * & 5.05 \pm 0.25 \\ B \rightarrow D^{(*)} \pi \vdash v * & 2.26 \pm 0.44 \\ B \rightarrow D_1^{0} \vdash v X^* & 0.74 \pm 0.16 \\ B \rightarrow X \vdash v^* & < 0.65 \ 90\% \ \text{CL} \end{array}$ $\begin{array}{c} * \text{PDG values} & \hline B \rightarrow X_u \vdash v & 0.17 \pm 0.05 \\ \hline \end{array}$		B → X I ⁻ ⊽ (Y(4S))	$\textbf{10.63} \pm \textbf{0.25}$					
$B \rightarrow D \vdash v*$ 2.13 ± 0.22 $B \rightarrow D^* \vdash v*$ 5.05 ± 0.25 $B \rightarrow D^{(*)} \pi \vdash v*$ 2.26 ± 0.44 $B \rightarrow D_1^{\circ} \vdash v X^*$ 0.74 ± 0.16 $B \rightarrow X \vdash v^*$ $< 0.65 90\% CL$ *PDG values $B \rightarrow X_u \vdash v$ $B \rightarrow X_u \vdash v$ 0.17 ± 0.05		$b \rightarrow X I^- v$ (LEP)	10.65 ± 0.23					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$B \rightarrow D I^- v^*$	2.13 ± 0.22					
$\begin{array}{ccccc} B \to D^{(*)} & \pi \ l^{-} & \nu * & 2.26 \pm 0.44 \\ & B \to D_{1}^{0} \ l^{-} & \nu \ X^{*} & 0.74 \pm 0.16 \\ & B \to X \ l^{-} & \nu^{*} & < 0.65 \ 90\% \ CL \\ \end{array}$ $\begin{array}{c} * \text{PDG values} & \underline{B \to X_{u}} \ l^{-} & \nu & 0.17 \pm 0.05 \\ \hline & T \to LD & \nu \ l^{-} & \nu & 0.17 \pm 0.05 \end{array}$		$B \rightarrow D^* I^- v^*$	5.05 ± 0.25					
PDG values $B \rightarrow D_1^0 \vdash v X^ \qquad 0.74 \pm 0.16$ $B \rightarrow X \vdash v^* \qquad < 0.65 90\% \text{ CL}$ 0.17 ± 0.05		$B \rightarrow D^{(*)} \pi l^- \nu *$	2.26 ± 0.44					
PDG values $B \rightarrow X I - v^$ < 0.65 90% CL $B \rightarrow X_u I^- v$ 0.17 ± 0.05		$B \to D_1^0 I^- \lor X^*$	0.74 ± 0.16					
PDG values $\xrightarrow{B \rightarrow X_u} I^- v$ 0.17 ± 0.05		$B \rightarrow X I - v^$	< 0.65 90% CL					
	*PDG values -	$B \rightarrow X_u \vdash v$	0.17 ± 0.05					
$10tal B exclusive 9.61 \pm 0.55$		Total B exclusive	9.61 ± 0.55					

al.

Global fit to Heavy Flavour results from LEPEWWG

INFN

- Large uncertainties from b→l modelling
- Statistical error sizeable

Conclusions

I N F N

Istituto Nazionale di Fisica Nucleare

LEP has measured BR(b → l) and BR(b → c → l) with several techniques
 BR(b→l) 0.1065 ± 0.0009_{stat} ± 0.0015_{sys} ± 0.0015_{mod} (0.0026_{ALEPH mod})

BR(b \rightarrow c \rightarrow I) 0.804 ± 0.0012_{stat} ± 0.0013_{sys} ± 0.0009_{mod} * Average results are consistent with Y(4S) measurements BR(B \rightarrow X I v)|_{LEP}=BR(B \rightarrow X I v) × τ_{B}/τ_{b} = 0.1082 ± 0.0023

BR(B \rightarrow X I v)|_{Y(4S)}= 0.1063 ± 0.0025

- A careful investigation of systematic errors due to modelling and fragmentation model has been done
- * New measurements from ALEPH which use a different approach for the (b \rightarrow l) modelling and have no fragmentation model dependence give results consistent with the usual LEP treatment. This can be considered as a cross-check of the robustness of the analyses.

Lepton p_T analysis (in units of 10^{-2}) $BR(b \rightarrow cbar \rightarrow I) = -0.407$ b frag = -0.120 $b \rightarrow 1 \mod = 0.348$ $c \rightarrow 1 \mod = -0.037 + 0.020$ $b \rightarrow D \mod = -0.055 + 0.049$

ALEPH new b \rightarrow X I v: systematics

INFN

Istituto Nazionale di Fisica Nucleare

	Δ [BR(b	$\rightarrow X \ell \nu)$]	Δ [BR(b -	$\rightarrow c \rightarrow X \ell \nu)$]
Source	p_{\perp}	Charge	p_{\perp}	Charge
Rb	negl.	negl.	negl.	negl.
R _c	± 0.005	∓ 0.007	∓ 0.002	± 0.017
$N(g \rightarrow b\bar{b})$	∓ 0.002	∓ 0.002	∓ 0.002	∓ 0.001
$N(g \rightarrow c\bar{c})$	∓ 0.001	∓ 0.006	∓ 0.014	∓ 0.006
electron ID efficiency	∓ 0.063	∓ 0.081	∓ 0.087	∓ 0.056
γ conversions	± 0.003	∓ 0.006	∓ 0.022	∓ 0.008
electron bkg	± 0.004	∓ 0.007	∓ 0.026	∓ 0.009
muon ID efficiency	± 0.065	± 0.063	± 0.039	± 0.039
muon bkg	± 0.002	∓ 0.013	∓ 0.037	∓ 0.015
$BR(b \rightarrow c \rightarrow X\ell\nu) _{\ell}$	± 0.004	± 0.022	± 0.002	∓ 0.026
BR(b $\rightarrow J/\psi (\psi') \rightarrow \ell \ell$)	negl.	negl.	negl.	negl.
$BR(b \rightarrow \tau \rightarrow \ell)$	∓ 0.017	∓ 0.043	∓ 0.053	∓ 0.011
$BR(b \rightarrow W \rightarrow c \rightarrow \ell)$	± 0.010	∓ 0.223	∓ 0.407	∓ 0.039
$BR(c \rightarrow X\ell\nu)$	negl.	∓ 0.016	∓ 0.009	± 0.016
$BR(b \rightarrow X_u \ell)$	∓ 0.032	∓ 0.022	± 0.013	∓ 0.004
b fragmentation	∓ 0.074	∓ 0.089	∓ 0.120	∓ 0.101
c fragmentation	± 0.001	± 0.005	negl.	∓ 0.005
ϵ_c sample B	± 0.027	± 0.015	∓ 0.009	∓ 0.010
ϵ_{uds} sample B	± 0.015	± 0.016	± 0.012	± 0.011
ϵ_c sample J	-	∓ 0.018	-	± 0.029
ϵ_{uds} sample J	-	negl.	-	negl.
ϵ_c sample P	-	∓ 0.012	-	± 0.019
ϵ_{uds} sample P	-	negl.	-	negl.
c charge tag rate	-	± 0.036	-	∓ 0.057
b charge tag rate	-	± 0.069	-	∓ 0.109
Mixing in $b \rightarrow X \ell \nu$	-	± 0.035	-	∓ 0.055
Mixing in $b \rightarrow c \rightarrow X \ell \nu$	-	∓ 0.055	-	± 0.087
bkg charge correlation	-	± 0.027	-	∓ 0.043
b tag - lept correlation	± 0.006	∓ 0.007	∓ 0.025	∓ 0.005

Total ±0.128 ± 0.290 ± 0.443 ± 0.212

Electrons: ·p>2 GeV ·Pad dE/dx info ·No cut on wires Larger efficiency with no dependence on p_t

dE/dX > -2 for both. Reduces K bkg in the muon sample •ECAL efficiency like in the past

$\frac{\text{INFN}}{\text{IFFix Nuclear}} \quad \text{ALEPH new b} \rightarrow X I_V: charge tag rate$

P_b = charge tag rate is measured by using double tag method

Count fraction of events with opposite charge hemispheres in data

Correct for hemisphere correlations and udsc contribution from MC

ALEPH new b \rightarrow X I v: charge tag rate

Tag rates measured from data:

- 1) jet charge lepton correlation
- 2) lepton lepton correlation

 $P_{b}^{1} = 0.73$ $P_{b}^{2} = 0.81$

a) P_b has a statistical error from data (double tagged hemispheres)

INFN

This statistical error is propagated in the measurement Then ⊕ to statistical error from the fit b) Systematic error on P_b due to correlation ρ₁ and ρ₂
between tag probabilities Typical MC values for ρ₁ and ρ₂
2.3- 2.6%.
Set ρ₁ and ρ₂ to zero and take half the shift