Study of $b \rightarrow s \gamma$ and $b \rightarrow d \gamma$ Colin Jessop SLAC BaBar Collaboration

Conference Papers ABS864, ABS865 and ABS866 (Also on hep-ex)

Physics Interest

Exclusive Measurements:

B(B -> K*γ) A_{cp}(B ->K*γ) B(B ->ργ)/B(B -> K*γ)

Inclusive Measurements:

 $B(b \rightarrow s_{\gamma})$ E_{γ} spectrum from $b \rightarrow s_{\gamma}$ QCD test Non SM CP violation Constrain V_{td}/V_{ts}

Constrain new physics Mass and Fermi motion of *b*

(NIM A 479, 1 2002)

BaBar Detector

Strengths for $b \rightarrow s, d\gamma$ studies

Asymmetric e^- (9 GeV) e^+ (3.1 GeV) collisions at $\sqrt{s} = 10.56$ GeV

Event Selection - γ

Isolated high energy γ (1.5 <E_γ* < 3.5 GeV)

Lateral profile is EM like

Veto photons from π^0/η

(Un-vetoed π^0/η are a significant background)

Note isotropic topology

Continuum(qq) Background

qq,(q=u,d,s,c) "underneath" the bb

"Jet-like" topology as qq produced above threshold

"shape" variables w.r.t to γ e.g. cos θ Thrust- γ , energy flow

Combinations of variables, e.g Neural Net, help with two component background

$B(B \rightarrow K^*\gamma)$ and $A_{cp}(B \rightarrow K^*\gamma)$

theorv=hep-ph/0106081 0106067 0105302

Challenges

Experiment:

Theory:

B(B -> ργ) ~ 1/50 *B*(B -> K*γ) Γρ ~ 3 Γκ* B ->K*γ, b->sγ, B -> ρπ⁰ backgrounds 15–35% error in Vtd/Vts extraction

cf. $\Delta M_s / \Delta M_d$ 7% error

Background Rejection

Continuum rejection variables (shape, ΔZ ,flavor tag) combined in neural net. Validate with control samples.

 π^+ eff. of 80% with K⁺ miss-id of 1% removes B-> K*(K⁺ $\pi^-/K^+ \pi^0$) γ bkg.

$B \rightarrow \rho, \omega \gamma result$

Signal Estimated with Maximum Likelihood Fit ($\Delta E, M_{ES}, M_{\pi\pi}$)

Mes (GeV)

Data: 84 x 10⁶ BB pairs No Signal, 90% C.L. set

a) B(B⁰ -> ρ⁰γ) < 1.4 × 10⁻⁶

SM Theory: 0.49 ± 0.16×10⁻⁶ 0.76 +0.26/-0.23 × 10⁻⁶

b) B(B⁺ ->ρ⁺γ) < 2.3 × 10⁻⁶

SM Theory: 0.85 ± 0.32x10⁻⁶ 1.53 +0.53-0.46 x10⁻⁶

c) B(B⁰ -> ωγ) < 1.2 × 10⁻⁶

SM Theory: Same as $\rho^{0}\gamma$ (isospin sym)

Analysis was performed with signal region "blinded"

Theory: hep-ph/0105302.0106081

Unitarity triangle

Inclusive $b \rightarrow s\gamma$

HQET: Quark-Hadron Duality $B(b \rightarrow s_{\gamma}) = B(B \rightarrow X_{s\gamma})$

Theory: NLO $B(b \rightarrow s\gamma)=3.57+-0.30 \times 10^{-4}$ (hep-ph/0207131)

Phenomenological models of E_{γ} spectrum parameterized in m_b and $\lambda_{1.}$ (hep-ph/9805303)

Phenomenological Model of Xs fragmentation (JETSET) (hep-ph950891)

If require just γ bkg. ~10³.Sig.

Challenge is to reduce bkg while Minimizing stat.+sys.+model errors

Two approaches:

	Semi-Inclusive	Fully Inclusive
Background Rejection	Σ(Exclusive States)	Lepton tags
Efficiency	3%	1%
Fraction of Xs states:	50%	100%
qq bkg estimation	Sideband subtraction	Off-resonance data
BB bkg estimation	Monte Carlo	M. Carlo - data validated
X-feed bkg estimation	Monte Carlo	No X-feed
Spectral Resolution	$\Delta Mxs \sim 5 MeV$	ΔE~100 MeV
Model Dependence	Xs, K*/Xs, Mxs cut	Έγ

Semi-Inclusive B -> Xsy

 Σ (exclusive states) = K⁺/K⁰s +up to 3π ($1\pi^{0}$), 12 states

Data 22M BB

Subtract continuum with sideband X-feed and BB bkg with Monte Carlo

Observe discrepency in JETSET simulation of Xs fragmentation.

Efficiency from Monte Carlo weighted to correct discrepency

Correct for undetected modes

<*E_γ>=2.35 ± 0.04 (stat.) ± 0.04(sys.)*

Λ=0.37 ± 0.09 (stat.) ± 0.07(sys.) ±0.10(theory (Using Ligeti et.al PRD 60, 034019 (1999)) & mb=4.79 ± 0.08 (stat.) ± 0.10(sys.) ±0.10(theory) (Ligeti - private comm.)

Fix mb=4.79 and fit using spectrum Of Kagan & Neubert Euro.Phys. J. C 7,5(1999)

B(B ->X_{sγ})= 4.3 ± 0.5 (stat.) ± 0.8(sys.) ±1.3(theory)x 10⁻⁴

 Λ from $b \rightarrow s\gamma$

Fully Inclusive $B \rightarrow X_{s\gamma}$

Suppress continuum background by requiring high momentum lepton tag $(P_e(P_\mu) > 1.3(1.55) GeV$

Additional shape variable $cos(\theta_{e\gamma})(cos(\theta_{\mu\gamma}))>-0.75(-0.7)$

Missing E > 1.2 GeV (Signal leptons from $B \rightarrow X l \upsilon)$

Xc

5% Efficiency for x1200 reduction in background

The tag is uncorrelated with signal B so no model dependence

Fully Inclusive $B \rightarrow X_{s\gamma}$

Model Dependence of $E^*\gamma$

MC Expectation in 61 x 10⁶ BB

2.1 < E_{γ} < 2.7 Signal Region (from considering stat+sys+model error)

Fully Inclusive $B \rightarrow X_{s\gamma}$

Dominant Systematic Uncertainty is from BB bkg, subtraction

BB π^{0}/η Background Control Sample

BB Background ~90% π⁰η ~6% hadrons in EM

MC is used for BB subtraction To Test: Same Selection as Signal sample except require γ to be from $\pi^0\eta$

Correct MC for integral in 2.1< $E^*\gamma < 2.7$ GeV by factor 0.89 ±0.17

Fully Inclusive $B \rightarrow X_s \gamma$

61 x 10⁶ BB (54.6 fb⁻¹)

Continuum Subtraction with 6.4 fb⁻¹ of "off-resonance" data

BB subtraction with Monte Carlo

Subtract assumed $4\pm1.6\% b \rightarrow d\gamma$

Signal Region was "blinded"

B(B -> X_{sγ}) = 3.88±0.36(stat.)±0.37(sys.)+0.43/-0.23 (theory) x 10⁻⁴

$Br(B->X_s\gamma)$

B ± stat ± syst ± theo $(3.88 \pm 0.36 \pm 0.37^{+0.43}_{-0.28}) \times 10^{-4}$ $(4.3 \pm 0.5 \pm 0.8 \pm 1.3) \times 10^{-4}$ $(3.21 \pm 0.43 \pm 0.27^{+0.18}_{-0.10}) \times 10^{-4}$ $(3.36 \pm 0.53 \pm 0.42 \pm 0.52) \times 10^{-4}$ $(3.11 \pm 0.80 \pm 0.72) \times 10^{-4}$

Conclusions

New limits on B -> $\rho,\omega\gamma$, Will soon help constrain CKM

First results from BaBar on B-> Xsy

New techniques for measuring $B \rightarrow X_{SY}$ provides competitative $B(B \rightarrow X_{SY})$ and will improve rapidly (< 10% soon)

Experimental precision is approaching theoretical errors