Search for $\tau \rightarrow \mu \gamma$ at BABAR

Michael Roney University of Victoria

BABAR Collaboration

XXXI International Conference on High Energy Physics

Amsterdam 2002

In standard model, extended to include v mixing mixing and mass, $BR(\tau \rightarrow \mu\gamma) \sim O(10^{-34})$

But lepton number is violated in many extensions to the standard model

e.g.
$$\frac{\tilde{v}}{\tau}$$

Current 90%CL limits on BR($\tau \rightarrow \mu \gamma$) 1.1 x 10⁻⁶@90%CL (CLEO on 13.8/fb, 1999) 1x 10⁻⁶@90%CL(Belle, unpublished 21.3/fb, 2001)

Predictions reach as high as 10^{-6} even in light of BR($\mu \rightarrow e\gamma$) <1.2 x 10^{-11} @90%CL (MEGA 1999)

M₀ parameter in a string-inspired model

Figure 16. Branch ratio for $\tau \to \mu + \gamma$ for a range of $m_0 < 500$ GeV and several values of $M_{1/2} < 200$ GeV. Two extremes values of M_{ν} are displayed : solid lines correspond to $M_{\nu} = M_{GUT}$, while dotted lines to $M_{\nu} = 2 \times 10^{12}$ GeV.

King & Oliveira, Phys. Rev. D60, 035003 (1999) Lepton flavor violation in string-inspired models

ICHEP 2002 Am

Signal: mass of τ and beam energy

J.M.Roney BABAR Collaboration

Selection:

Blinding box: hide data within $\pm 3\sigma$ of expected ΔE and m_{τ}

Selection:

 $\tau_{signal} \rightarrow \mu \gamma$

- muon ID:
 - low calorimeter energy
 - track matched into IFR
 - IFR signature for muon
- 1 calorimeter cluster:
 - above 400MeV
- electron ID
 E/p, dE/dx, DIRC, cal.
 - multi-hadron decay
 - mass in tagging hemisphere
 - not a muon, using IFR and calorimeter
 - $|m_{v}^{2}| < 0.5 \, GeV^{2}$

 $\tau_{tag} \rightarrow evv \qquad (BR=18\%)$

$$\tau_{tag} \rightarrow h \geq 1 \pi^0 \nu \quad (BR=37\%)$$

Also Require: visible energy on tagging side <0.8E_{beam} in CMS

Selection in Grand Side Band:

τ background: data (points) & simulation

Signal Selection:

Efficiency using signal simulation with corrections from data control samples. Also, Grand Side Band events have nearly identical signature as signal \rightarrow obs./expected=1.022±0.069±0.025

Signal Efficiency: including BR from tags $5.2\pm0.1\pm0.5$ %

Systematic Influence	Relative Error	
on the Signal Efficiency	(%)	
selection	±7.3	
Track and Ecal resolution:		
ΔE scale	± 0.8	includes
ΔE resolution	± 3.4	includes
$m_{ m EC}$ scale	± 0.3	•Trigger efficiency
$m_{ m EC}$ resolution	± 0.6	•photon reconstr
Ecal Scale	± 3.3	•electron tag eff.
Momentum Scale	small	 hadronic tag eff.
beam energy scale and spread	± 0.3	 μ - PID requirements
Total	± 8.8	

Backgrounds:

- e+e- -> μμγ Removed with tag and visible energy on tag side
- e+e- -> $q\bar{q}$ (uds & $c\bar{c}$) Removed with $\mu\gamma$ requirements and tags
- Residual background:
 - $e+e- \rightarrow \tau \tau \gamma$
 - $\Box \quad \tau \to \mu \nu \nu \qquad (86\%)$
 - $\Box \quad \tau \to \pi(\mathbf{K}) \, \nu \qquad (10.6\%)$
 - $\Box \quad \tau \to \pi(\mathbf{K})\pi^0 \nu \quad (3.5\%)$

m_{EC} blinded background 7.8 ±1.4events

from data sidebands

[if 8 events observed, expect a limit of BR($\tau \rightarrow \mu\gamma$)< 9.5x10⁻⁷@90%CL]

J.M.Roney BABAR Collaboration

ICHEP 2002 Amsterdam

m_{FC} unblinded

13 events observed

J.M.Roney BABAR Collaboration

ICHEP 2002 Amsterdam

J.M.Roney BABAR Collaboration

ICHEP 2002 Amsterdam

Prospects

- sensitivity to increase:
 use of likelihood fit
- sample size to increase:
 2002 data (30fb⁻¹)
 2005 sample will approach ~ ½ ab⁻¹

• search for $\tau \rightarrow e\gamma$

Summary

A search for the lepton number violating decay $\tau \rightarrow \mu \gamma$ in the 56Million $e^+e^- \rightarrow \tau^+ \tau^$ events produced in **BABAR** results in 13 events being observed with an expected background of 7.8±1.4 events. BR($\tau \rightarrow \mu\gamma$)<2.0x 10⁻⁶ @90%CL

Supplementary: Comparisons with CLEO & Belle analyses

- BABAR: if 8 events had been observed, limit would have have been $BR(\tau \rightarrow \mu\gamma) < 9.5 \ge 10^{-7}$ with 56M τ -pair pair
- CLEO likelihood fit gives $BR(\tau \rightarrow \mu\gamma) < 1.1 \ge 10^{-6}$ and cross-checks with a cut-and-count approach, which gives: $BR(\tau \rightarrow \mu\gamma) < 1.8 \ge 10^{-6}$ (6 observed and 5.5 ± 0.5 events expected) with 12.6M τ -pair
- BELLE (2001 prelim.): 1.0 x 10⁻⁶ (3 events observed, observed, 5.9 ±0.6 events expected) with 19.3M τ-pair pair (*if 6 events had been observed, limit would have been* 1.3 x 10⁻⁶)