Evidence for the Flavor Changing Neutral Current Decays $B \rightarrow Kl^+l^-$ and $B \rightarrow K^*l^+l^-$

> Jeffrey D. Richman UC Santa Barbara for the BABAR Collaboration

ICHEP 2002, Amsterdam, July 27, 2002

Outline

- Theoretical predictions
- Experimental status
- *B* reconstruction procedure, backgrounds, and event selection
- Fits and results
- Conclusions

Theory predictions: the standard model and beyond

• $B \to K^{(*)}l^+l^-$: sensitive to Wilson coefficients C_7 , C_9 , C_{10} in OPE

- $B \to K^* \gamma$: depends almost entirely on $|C_7|$
- New, heavy particles can affect the rate (2X) and decay distribs.

Theoretical predictions based on the standard model

Authors	$\mathcal{B}(B \rightarrow K l^+ l^-)$	$\mathcal{B}(B \rightarrow K^* \mu^+ \mu^-)$	$\mathcal{B}(B \rightarrow K^* e^+ e^-)$
	$/10^{-6}$	$/10^{-6}$	$/10^{-6}$
Ali et al. (2000) -	$\rightarrow 0.57^{+0.17}_{-0.10}$	$1.9^{+0.5}_{-0.4}$	$\rightarrow 2.3^{+0.7}_{-0.5}$
Ali et al. (2001) [NNLO] -	→ 0.35 ± 0.12	1.19 ± 0.39	1.58 ± 0.49
Aliev <i>et al.</i> (1997)	0.31 ± 0.09	1.4	
Colangelo et al. (1996)	0.3	1.0	
Faessler et al. (2002)	0.55	0.81	
Geng and Kao (1996)	0.5	1.4	
Melikhov et al. (1998)	0.44	1.15	1.50
Zhong <i>et al.</i> (2002)	$0.69\substack{+0.28\\-0.25}$	$1.98^{+0.66}_{-0.71}$	$2.01\substack{+0.65 \\ -0.73}$

• $\mathcal{B}(B \rightarrow K\ell^+\ell^-) =$ dominant uncertainty: form factors (0.35 ± 0.11(form fac.) ± 0.04(μ_b) ± 0.02($m_{t,pole}$) ± 0.0005(m_c/m_b)) × 10⁻⁶ [Ali, Lunghi, Greub, Hiller, hep-ph/0112300, 2001] New calculations of QCD corrections predict too high a rate for B->K* γ ; the necessary adjustment of T_1 form factor lowers the prediction for B->K*l⁺l⁻.

Recent experimental results

• Belle (29.1 fb⁻¹) [K. Abe *et al.*, PRL 88, 021801 (2002).] $B(B \rightarrow Kl^+l^-) = (0.75^{+0.25}_{-0.21} \pm 0.09) \times 10^{-6}$

 $B(B \to K^* \mu^+ \mu^-) < 3.1 \times 10^{-6}$

• BABAR (20.7 fb⁻¹)[B. Aubert *et al.*, PRL 88, 241801 (2002).] $B(B \rightarrow K l^+ l^-) < 0.51 \times 10^{-6}$ 90% C.L.

$$B(B \to K^* l^+ l^-) < 3.1 \times 10^{-6}$$
 90% C.L.

• BABAR (56.4 fb⁻¹) [FPCP, DPF conferences]

$$B(B \rightarrow Kl^+l^-) = (0.84^{+0.30+0.10}_{-0.24-0.18}) \times 10^{-6}$$

$$B(B \rightarrow K^* l^+ l^-) < 3.5 \times 10^{-6}$$

• Today: Run 1+2 prelim. result (77.8 fb⁻¹ => 84.4 M $B\overline{B}$)

Decay modes and final states

$$\begin{bmatrix} B^{+} \to K^{+}e^{+}e^{-} & B^{+} \to K^{+}\mu^{+}\mu^{-} \\ B^{0} \to K^{0}e^{+}e^{-} & B^{0} \to K^{0}\mu^{+}\mu^{-} \\ B^{+} \to K^{*+}e^{+}e^{-} & B^{+} \to K^{*+}\mu^{+}\mu^{-} \\ B^{0} \to K^{*0}e^{+}e^{-} & B^{0} \to K^{*0}\mu^{+}\mu^{-} \end{bmatrix}$$

We reconstruct $K^0 \rightarrow K_s^0 \rightarrow \pi^+ \pi^-$, $K^{*0} \rightarrow K^+ \pi^-$, and $K^{*+} \rightarrow K^0 \pi^+$.

B reconstruction with $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ $m_{\rm ES} = \sqrt{E_{\rm beam}^{*}^2 - (\sum_{i={\rm daughters}} \vec{p}_i^*)^2} \quad \Delta E = \sum_i \sqrt{(\vec{p}_i^*)^2 + m_i^2} - E_{\rm beam}^*$

Typical resolutions: $\sigma(m_{\rm ES}) \approx 2.5$ MeV, $\sigma(\Delta E) \approx 25 - 40$ MeV

Backgrounds and event selection

 $B \to J/\psi K^{(*)}, \ \psi(2S)K^{(*)} \text{ with } \psi \to l^+l^-$

Veto charmonium mass regions and J/ ψ K->K* l^+l^- feedup $B\overline{B}$ combinatorics, especially from $B \rightarrow l^+$, $\overline{B} \rightarrow l^-$

Combine E_{miss} , vertex information, and B production angle into a "B likelihood" variable. Continuum: $e^+e^- \rightarrow q\overline{q}$ (especially $c\overline{c}$), 2-photon Jet-like event shape and M(Kl) [D->Klv] into **Fisher variable** Peaking backgrounds: $B^+ \to D^0 \pi^+ (D^0 \to K^- \pi^+)$; Veto and/or include in fit. $B^{-} \rightarrow K^{-} \pi^{+} \pi^{-}; B \rightarrow K^{*} \gamma_{\text{conv}}$

Charmonium veto regions in ΔE vs. m_{ll} (Monte Carlo simulation) $\underline{B \to J}/\psi(e^+e^-)K^{*0}$ $\underline{B \to J/\psi(\mu^+\mu^-)}K^{*0}$ 0.4 0.2 Nom. sig. (GeV) region **O** ΔE -0.2 -0.4 3 4 2 З 2 m_{e+e} (GeV/c²) $m_{\mu+\mu}$ (GeV/c²) Radiation can pull m_{l+l} below the J/ψ mass, but ΔE becomes negative!

Check of charmonium tails in *m_{l+l}*.

The MC simulates bremsstrahlung effects reasonably well.

Charmonium control sample yields

Mode $(J/\psi \rightarrow \ell^+ \ell^-)$	MC Yield	Data Yield	Data/MC(%)	
Combined by hadron	final state			
$B^{\pm} \to K^{\pm} \ell^+ \ell^-$	1580.9	1562	$98.8 {\pm} 2.8$	
$B^0 \to K^0_{\scriptscriptstyle S} \ell^+ \ell^-$	466.5	456	$97.7 {\pm} 4.6$	
$B^0 \to K^{*0} \ell^+ \ell^-$	848.2	935	110.2 ± 3.9	
$B^{\pm} \to K^{*\pm} \ell^+ \ell^-$	264.9	255	$96.3 {\pm} 6.2$	
Combined by lepton final state				
e^+e^- modes	1836.4	1871	101.9 ± 2.6	
$\mu^+\mu^-$ modes	1324.1	1337	101.0 ± 3.0	
All modes	3160.5	3208	101.5 ± 1.9	

→ MC normalization based on published *BABAR* measurements.

 $B \rightarrow D\pi^-$ vetoes in $B \rightarrow K^{(*)}\mu^+\mu^-$ **Double fake** $B \rightarrow D\pi_{-}$ $D \rightarrow K^{(*)} \pi^+$ Reassign particle masses and veto D region in $M(K\pi)$ • Triple fake and $M(K^*\pi)$ in muon $B^- \rightarrow D^0 \pi^$ channels. μ^+ $D^0 \rightarrow K^- \pi^+$ Typical mis-ID probabilities (momentum dependent):

 $P(\pi \rightarrow e)=0.1\%-0.3\%; P(\pi \rightarrow \mu)=1.3\%-2.7\%$

Estimates of remaining peaking backgrounds

Mode	Peaking background (events)		
$B^{\pm} \rightarrow K^{\pm} e^+ e^-$	$0.0\substack{+1.0 \\ -0.0}$		
$B^\pm \to K^\pm \mu^+ \mu^-$	0.7 ± 0.7		
$B^0 \rightarrow K^0_{\scriptscriptstyle S} e^+ e^-$	$0.0\substack{+0.1 \\ -0.0}$		
$B^0 \to K^0_{\scriptscriptstyle S} \mu^+ \mu^-$	0.5 ± 0.5		
$B^0 \to K^{*0} e^+ e^-$	$0.2\substack{+0.5 \\ -0.2}$		
$B^0 ightarrow K^{*0} \mu^+ \mu^-$	1.2 ± 1.2		
$B^\pm \to K^{*\pm} e^+ e^-$	$0.1\substack{+0.4 \\ -0.1}$		
$B^{\pm} \to K^{*\pm} \mu^+ \mu^-$	1.0 ± 1.0		

→ Except for contribution from B->K*γ, these backgrounds are computed by applying measured hadron->lepton fake rates to a MC sample 9X the data. Peaking backgrounds are not negligible in the muon channels.

m_{l+l} for events in nominal signal region (includes some background)

Events do not cluster on veto boundaries.

Fit method

- 2-dim, unbinned maximum likelihood fit in m_{ES} vs. ΔE
- Signal shape:
 - Solution Use Geant MC with shifts from J/ψK(*) samples;
 Crystal Ball parametrization.
- Background shape: ARGUS shape in m_{ES} ; exponential in ΔE . Possible correlation is considered in evaluation of systematic error.
- The background normalization and shape parameters float in the fit.

Data: fit projections onto m_{ES} and ΔE for $B^+ \rightarrow K^+ e^+ e^-$ and $B^+ \rightarrow K^0_S e^+ e^-$ **BABAR** preliminary 10 10K⁺e⁺e⁻ $K^+e^+e^ 14.4_{-42}^{+5.0}$ evts Entries/3 MeV/c² Entries/3 MeV/c² 5.2 5.22 5.26 5.24 5.28 -0.2 0.2 -0.1 0.1 0 $m_{\rm ES}\,({\rm GeV}/c^{2})$ ΔE (GeV) $K_{s}^{o}e^{+}e^{-}$ $1.3^{+2.6}_{-1.7}$ evts Entries/3 MeV/c² Entries/3 MeV/c² <u>0</u> 5.2 5.28 0.2 5.22 5.24 5.26 -0.1-0.2 0 0.1 $m_{\rm ES}\,({\rm GeV}/c^2)$ ΔE (GeV)

 $-0.11 < \Delta E < 0.05 \text{ GeV}$

 $5.2725 < m_{ES} < 5.2856 \text{ GeV}/c^2$

Yields, efficiencies, systematic errors, and branching fractions

BABAR preliminary

Mode	Signal	ϵ	$(\Delta \mathcal{B}/\mathcal{B})_\epsilon$	$(\Delta \mathcal{B})_{\mathrm{fit}}$	${\mathcal B}$
	Yield	(%)	(%)	$(/10^{-6})$	$(/10^{-6})$
$B^+ \rightarrow K^+ e^+ e^-$	$14.4_{-4.2}^{+5.0}$	17.5	± 6.8	$^{+0.14}_{-0.21}$	$0.98\substack{+0.34+0.16\\-0.28-0.22}$
$B^+ \rightarrow K^+ \mu^+ \mu^-$	$0.5^{+2.3}_{-1.3}$	9.2	± 6.6	$^{+0.09}_{-0.08}$	$0.06\substack{+0.30+0.09\\-0.17-0.08}$
$B^0 \rightarrow K^0 e^+ e^-$	$1.3^{+2.6}_{-1.7}$	18.6	± 7.9	± 0.14	$0.24\substack{+0.49+0.14\\-0.32-0.15}$
$B^0 {\rightarrow} K^0 \mu^+ \mu^-$	$3.6\substack{+2.9 \\ -2.1}$	9.4	± 7.7	± 0.24	$1.33^{+1.07}_{-0.78}\pm0.26$
$B^0 {\rightarrow} K^{*0} e^+ e^-$	$10.6^{+5.2}_{-4.3}$	10.6	± 7.6	$^{+0.46}_{-0.47}$	$1.78_{-0.72-0.49}^{+0.87+0.48}$
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$	$3.4^{+3.9}_{-2.8}$	6.1	± 9.3	± 0.38	$0.99^{+1.14}_{-0.82}\pm0.39$
$B^+ \rightarrow K^{*+} e^+ e^-$	$0.3^{+3.7}_{-2.3}$	10.3	± 9.5	$+0.69 \\ -0.72$	$0.15\substack{+1.87+0.69\\-1.16-0.72}$
$B^+ \rightarrow K^{*+} \mu^+ \mu^-$	$3.6\substack{+3.9 \\ -2.5}$	5.2	±11.1	± 1.80	$3.61^{+3.91}_{-2.51} \pm 1.84$

Low muon system efficiencies \rightarrow install replacement detectors

Combined fits: all channels

To combine the K^{*ll} modes, we assume $K^{*ee/K^{*}\mu\mu}=1.2$ (Ali *et al.*).

Combine channel fits

 $B(B \to Kl^+l^-) = (0.78^{+0.24+0.11}_{-0.20-0.18}) \times 10^{-6}$ $B(B \to K^*l^+l^-) = (1.68^{+0.68}_{-0.58} \pm 0.28) \times 10^{-6}$ $< 3.0 \times 10^{-6} \quad 90\% \text{ C.L.}$

- The combined significance of the B->Kll channels is 4.4σ (including systematic errors).
- There is an indication of a signal in *B->K*ll*, but the significance is only 2.8σ (including systematic errors).
- This result is consistent with our result from 56.4 fb⁻¹ (and is somewhat higher than our original upper limit based on 20.7 fb⁻¹).

Conclusions

- We have updated our analysis with a sample of 84.4 M *BB* events, about four times the size of our original sample.
- We observe a *B->Kl⁺l⁻* signal (4.4σ) with branching fraction

 $B(B \to Kl^+l^-) = (0.78^{+0.24+0.11}_{-0.20-0.18}) \times 10^{-6}$

• The central value is higher than most theoretical predictions based on the SM, but the uncertainties are large (both expt and theory), so there is no inconsistency.

Conclusions (cont.)

We observe events consistent with a *B->K*l⁺l⁻* signal, but the significance is only 2.8σ

 $B(B \to K^* l^+ l^-) = (1.68^{+0.68}_{-0.58} \pm 0.28) \times 10^{-6}$

 $< 3.0 \times 10^{-6}$ 90% C.L.

- These modes will be studied for many years to come. We can expect
 - better measurements and predictions for branching fractions
 - studies of kinematic distributions, which will provide additional sensitivity to new physics with less model dependence.

Backup Slides

Multiplicative systematic errors: efficiencies and event sample

Systematic	$K^+e^+e^-$	$K^+\mu^+\mu^-$	$K_S e^+ e^-$	$K_S \mu^+ \mu^-$
Trk eff. (e, μ)	± 1.6	± 1.6	± 1.6	± 1.6
Electron ID	± 2.7	-	± 2.7	-
Muon ID	-	± 2.0	-	± 2.0
K, π ID	± 2.0	± 2.0	-	-
Trk eff. (K, π)	± 1.3	± 1.3	± 2.6	± 2.6
K_S^0 eff.	-	-	± 3.2	± 3.2
$B\overline{B}$ Counting	± 1.1	± 1.1	± 1.1	± 1.1
Fisher	± 1.5	± 1.5	± 1.5	± 1.5
$B\overline{B}$ likelihood	± 2.5	± 2.5	± 2.5	± 2.5
Model dep.	± 4.0	± 4.0	± 4.0	± 4.0
MC statistics	± 1.1	± 1.1	± 1.1	± 1.1
Total	± 6.8	± 6.6	± 7.9	± 7.7

Systematic errors on the fit yields

Mode	Signal Shape	Comb. Background Shape	Peaking Background
$K^+e^+e^-$	± 0.3	± 1.8	$^{+0.0}_{-1.0}$
$K^+\mu^+\mu^-$	± 0.0	± 0.1	± 0.7
$K^0_S e^+ e^-$	± 0.3	± 0.7	$^{+0.0}_{-0.1}$
$K^0_S \mu^+ \mu^-$	± 0.1	± 0.3	± 0.5
$K^{*0}e^+e^-$	± 0.4	± 2.6	$\substack{+0.2\\-0.5}$
$K^{*0}\mu^+\mu^-$	± 0.2	± 0.3	± 1.2
$K^{*+}e^+e^-$	± 0.4	± 1.3	$\substack{+0.1\\-0.4}$
$K^{*+}\mu^+\mu^-$	± 0.3	±1.4	±1.0

- Signal shape: allow 50% larger radiative tail; vary m_{ES} , ΔE means from control sample values to MC values.
- Combinatorial background shape: fix m_{ES} slopes to MC values; allow m_{ES} slope to have quadratic dependence on ΔE .
- Peaking background estimates: typically 100% uncertainties.

BaBar Event Display EM Calorimeter: 6580 CsI(Tl) (view normal to beams) crystals (5%) energy res.) **Cerenkov ring imaging** detectors: 144 quartz bars (measure *velocity*) **Tracking volume: B=1.5** T R_{drift chamber}=80.9 cm Silicon Vertex Tracker (40 measurement points, each with 5 layers: 15-30 µm res. 100-200 µm res. on charged tracks)

Control samples

- We make extensive use *control samples* in the data to check the MC, both for signal and background.
 - Decays to charmonium. Each final state has a "signal-like" control sample that is identical except for the restricted range of q². Checks MC predictions for cut efficiencies.
 - Substitution State S
 - *Keμ*: monitors combinatorial background

Check of E_{lep} distributions using $J/\psi K(*)$ samples

Data=Points with error bars; MC=histogram

BABAR preliminary

→ We understand lepton ID efficiencies vs. lepton momentum.

Check of *B* **likelihood distributions using** *J*/*ψK*(*)

→ Use this comparison to evaluate systematic errors on efficiencies.

Check of Fisher variable (continuum suppression) distributions using $J/\psi K(*)$

→ Use this comparison to evaluate systematic errors on efficiencies.

Data: fit projections onto ΔE slices $B^+ \rightarrow K^{*0} e^+ e^-$

Forward-backward asymmetry vs. q^2

