Leptonic B Decays at BaBar

Thomas Moore University of Massachusetts, Amherst

31st International Conference on High Energy Physics July 24-31 2002

- $B^0 \rightarrow \ell^+ \ell^-$
- $B^+ \rightarrow K^+ \nu \overline{\nu}$

 $B^0 \rightarrow \ell^+ \ell^-$

- $B^0 \rightarrow \ell^+ \ell^-$ is highly suppressed in the Standard Model:
 - CKM suppression $(b \rightarrow d \text{ transition})$
 - helicity suppression $(m_{\ell}/m_{\rm B})^2$
- Sensitive to new physics:
 - multi-Higgs-doublet models
 - leptoquarks, R-parity violating SUSY...
- Standard Model BR predictions (Ali, Greub, Mannel) and experimental upper limits:

	SM BR	CLEO(9.1 fb ⁻¹)	Belle(21.3 fb ⁻¹)
$\mathrm{B}^{0} \rightarrow \mathrm{e}^{+}\mathrm{e}^{-}$	≈ 10 ⁻¹⁵	8.3×10 ⁻⁷	6.3×10 ⁻⁷
$B^0 \rightarrow \mu^+ \mu^-$	≈ 10 ⁻¹⁰	6.1×10 ⁻⁷	2.8×10 ⁻⁷
$B^0 \rightarrow e^+ \mu^-$	-	15.0×10 ⁻⁷	9.4×10 ⁻⁷

T. B. Moore

$B^0 \rightarrow \ell^+ \ell^- Analysis$

- Event Preselection:
 - total energy $E_{Tot} < 11.0 \text{ GeV}$
 - missing momentum $p_{\text{Miss}} < 3.0 \text{ GeV}$
 - multiplicity $N_{Mult} = N_{Trk} + \frac{1}{2} N_{\gamma} \ge 6$
- Signal Reconstruction:
 - locate B decay vertex with two high p leptons ($P_{vtx} > 0.1\%$)
 - ${\ensuremath{\bullet}}$ define a signal box in ΔE vs m_{ES} ,

$$\Delta E = \sum_{i} \sqrt{m_i^2 + (p_i^*)^2} - E_{beam}^* \qquad m_{ES} = \sqrt{(E_{beam}^*)^2 - (\sum_{i} p_i^*)^2}$$

- Continuum Suppression: event shape variables
- Analysis is performed blind: 54.4 fb⁻¹ of data (60 M BB events) collected at the Υ(4S).

Lepton Identification

- electrons identified with EMC
- high efficiency (>90%)
- low π mis-id ($\approx 10^{-3}$)

- muons identified with IFR
- tight selection efficiency $\approx 70\%$
- π mis-id $\approx 2.5\%$

Continuum Suppression

 $\cos\theta_{T}$: angle between B momentum and thrust axis of the rest of the event |T|: thrust magnitude

Cut values are optimized simultaneously for best upper limit

$\Delta E vs m_{ES}$ (Signal MC)

T. B. Moore

Expected Background

- Backgrounds are expected from:
 - real leptons from continuum cc decays
 - $\pi \rightarrow \mu$ misidentification in $B \rightarrow \mu^+ \mu^-$ and $B \rightarrow e^+ \mu^-$ channels
 - 2-photon processes in $B \rightarrow e^+e^-$ and $B \rightarrow e^+\mu^-$ channels
- Backgrounds are estimated from the data sidebands by extrapolating into the signal box. Normalization is taken from the data in the sideband.
- No background subtraction is applied when extracting the upper limits.

$B^0 \rightarrow \ell^+ \ell^- Results$

T. B. Moore

$B^+ \rightarrow K^+ \nu \overline{\nu}$

- $B^+ \rightarrow K^+ v \bar{v}$ involves flavor-changing neutral currents and is thus highly suppressed in the Standard Model, $B(B^+ \rightarrow K^+ v \bar{v}) \approx 3.8 \times 10^{-6} (SM)$
- b→svv is nearly free from strong interaction effects and has a small theoretical uncertainty.
- This decay is sensitive to new physics ^B emerging in the loops: *Fourth generation, extra vector-like down quark, R-parity violating SUSY, FCNC Z'*
- The best experimental limit is from CLEO, $B(B^+ \rightarrow K^+ \nu \bar{\nu}) < 2.4 \times 10^{-4} (90\% \text{ CL})$

$B^+ \rightarrow K^+ \nu \overline{\nu}$ Analysis

- This decay includes 2 neutrinos so we must tag the other B and search the recoil system for the signal.
- The other B is tagged by partial reconstruction of:
 - B⁻→ $D^0\ell^-\nu(X)$ $\downarrow K^-\pi^+, K^-\pi^+\pi^-, K^-\pi^+\pi^0$
- Tagging efficiency is estimated to be 0.55% from MC.
- We look for events with one remaining high momentum Kaon (identified by DIRC) and little remaining neutral energy.

В

Y(4S)

• A blind analysis was performed using 50.7 fb⁻¹ (56.3 M \overline{BB}) of data collected at the Y(4S).

K

K

$B^{-} \rightarrow D^{0} \ell^{-} \nu(X)$ Tag Selection

We have ≈ 2500 tags per fb⁻¹ compared to ≈ 350 for fully reconstructed hadronic modes

T. B. Moore

Signal Selection

- 1 remaining track passes Kaon identification
- $E_{left} < 0.5$ GeV (remaining neutral energy)
- p*(K) >1.5 GeV/c
- $-0.9 < cos \theta_{K\ell} < 0.8$ (angle between Kaon and tag lepton)

T. B. Moore

Signal Box

- Define signal and sideband regions in D⁰ mass vs E_{left}.
- Check for data/MC consistency in the E_{left} and D⁰ mass sidebands.
- The region below 1 GeV in E_{left} was blinded until the analysis was complete.

Remaining neutral Energy (GeV)

$B^+ \rightarrow K^+ v \overline{v}$ Results

 $B(B^+ \rightarrow K^+ \nu \overline{\nu}) < 9.4 \times 10^{-5} (90\% CL)$

Conclusions

• With 54.4 fb⁻¹, BaBar has set the following upper limits on the $B \rightarrow \ell^+ \ell^-$ branching ratios at 90% CL,

 $B(B \rightarrow e^+e^-) < 3.3 \times 10^{-7}$ $B(B \rightarrow \mu^+\mu^-) < 2.0 \times 10^{-7}$ $B(B \rightarrow e^+\mu^-) < 2.1 \times 10^{-7}$

• With 50.7 fb⁻¹, we set the following upper limit on the $B \rightarrow K \overline{vv}$ branching ratio at 90% CL,

 $B(B^+ \rightarrow K^+ \nu \overline{\nu}) < 9.4 \times 10^{-5}$

The BaBar Detector

PEP-II delivers boosted e+e- $\rightarrow \Upsilon(4S) \rightarrow BB \ (\beta \gamma = 0.56)$

