

Cristina Riccardi

Dipartimento di Fisica Nucleare e Teorica & INFN-Pavia

Outline

- Charm Baryon lifetimes
- Measurements of Λ_c^+ decay modes
- Double Charm Baryon search
- Conclusions

XXXI International Conference on High Energy Physics July 24-31, Amsterdam

Successor to E687. Designed to study charm particles produced by ~180 GeV photons using a fixed target spectrometer with updated

Vertexing, Cerenkov, EM Calorimeters, Hadron Calorimeter and Muon id capabilities.

Member groups from USA, Italy, Brazil, Mexico, Korea.

24-31 July 2002 Amsterdam Charmed baryons and HQ spectroscopy from FOCUS

 $K\pi.K2\pi.K3\pi$ combined

Charm Baryon Lifetimes

EB31

 The hadronic partial width has contributions from mechanisms other than spectator quark decay
 (W exchange, destr. and constr. PI)

Not universal semileptonic decay widths for charm baryons

Lifetimes study provides:

Qualitatively (neglecting mass difference and CS decays):

$$\Gamma(\Lambda_{c}^{+}) = \Gamma_{spec} + \Gamma_{exc} + \Gamma^{-}$$

$$\Gamma(\Xi_{c}^{+}) = \Gamma_{spec} + \Gamma^{+} + \Gamma^{-}$$

$$\Gamma(\Xi_{c}^{0}) = \Gamma_{spec} + \Gamma_{exc} + \Gamma^{+}$$

$$\Gamma(\Omega_{c}^{0}) = \Gamma_{spec} + (10/3) \Gamma^{+}$$

Expected hierarchy: $\Gamma(\Xi_{c}^{+}) < \Gamma(\Lambda_{c}^{+}) < \Gamma(\Xi_{c}^{0}) \approx \Gamma(\Omega_{c}^{0})$

◆ Probe into the non-perturbative sector of heavy quark decay
◆ Test of various quark models and Heavy Quark Expansion methods
◆ Exp BR→ calculated decay rates

Needed τ of Ξ_c^+ , Ξ_c^0 , Ω_c^0 to 10% to quantify contributions

Improvement on the lifetimes understanding can be provide by: \Rightarrow measurement of the semileptonic BR of charm baryons to probe HQE \Rightarrow study of the exclusive modes of Λ_c^+ (in particular CS decays)

24-31 July 2002 Amsterdam

Lifetime measurement technique

•Vertex algorithm is driven by charm candidates (cut on $L > N \sigma_I$)

•The fit variable is the **reduced proper time t' = (L - N \sigma_L)/\beta\gamma c,** where N is the detachment cut \rightarrow minimize acceptance corrections

- •Proper time resolution: ($\sigma \sim 40$ fs)
- No resolution convolution systematics/error inflation
 Systematic test of the method validity for short lived decays

Binned likelihood method

The expected number of events in each t' bin is:

$$\mu_{i} = (N_{s} - B) \frac{f(t'_{i}) \exp(-\frac{t'_{i}}{\tau})}{\Sigma_{i} f(t'_{i}) e^{-t'_{i}/\tau}} + B \frac{b_{i}}{\Sigma_{i} b_{i}}$$

Acceptance/efficiency/absorption f(t') correction by MC

b_i: background from the ith t' bin of sidebands distributions

We maximize likelihood function:

$$\mathcal{L} = \left(\prod_{i} \frac{\mu_{i}^{-n_{i}} e^{-\mu_{i}}}{n_{i}!}\right)$$

24-31 July 2002 Amsterdam

Fit Parameters are
$$\tau$$
, **B**
B-tie term. 4

•Variation of sidebands location and size/ no B-tie term

1.3

MC correction function

Reduced Proper Time (ps)

Uncertainty of f(t') correction:

 Check MC simulation: momenta, primary vtx multiplicity, decay lengh, proper time resolutions
 Acceptance/efficiency corrections check using short-lived Ks (excellent agreement →upper limit error)^{0.7}
 Variation of production parameter and resonance substructures

- •Proper time resolution comparing data-MC, bin size and fit range variations
- •Absorption effects: cross sections variation, in-out target decays, different target 24-31 July 2002 Amsterdam Charmed baryons and HQ 5 spectroscopy from FOCUS

 Λ_{c}^{+} lifetime result

Comparison with other measurements

Syst. Source	σ _{sys} (%)
Time scale	0.11
Backgrounds	0.77
Acceptance	0.83
Production	0.38
Resolution	0.12
Absorption	0.23
Total	1.23

24-31 July 2002 Amsterdam Charmed baryons and HQ spectroscopy from FOCUS

E831

$\Xi_{\rm c}^{\ 0}$ lifetime measurement

★ Binned Likelihood method
★ L(Ξ_c⁰) = $\mathcal{L}(\Xi^{-}\pi^{+})$ x $\mathcal{L}(\Omega^{-}K^{+})$ ★ Systematic investigation of resolution effect
(σ_t(Ξ⁻π⁺) =40 fs, σ_t(Ω⁻K⁺) =80fs comparable to τ)
• Variation of the fit method (*resolution convolution*)
• Mini MC study with a wide range of input lifetimes

24-31 July 2002 Amsterdam Charmed baryons and HQ spectroscopy from FOCUS

MC correction functions

Total sample: 110±17 events

E831

spectroscopy from FOCUS

Amsterdam

 $\frac{PDG}{2002} = 2697.5 \pm 2.6 \text{ MeV/c}^2$

24-31 July 2002 Amsterdam

MC correction functions

preliminary $\Omega_c^{\ 0}$ lifetime systematics and result

Systematic studies:

No remarkable effects of production/absorption > proper time resolution (bin size-fit range dependency) > as for Ξ_c^{0} , study effects due to resolution comparable to the lifetime > Background studies: signal /sidebands region (location and widths)

Comparison with other measurements

Results for Charm Baryons Lifetimes

FOCUS significantly improved the accurancy of all charm baryons lifetimes.

From the FOCUS results: $\tau\left(\Xi_{c}^{+}\right)$ $\tau\left(\Lambda_{c}^{+}\right) = 2.15 \pm 0.13$ $\tau\left(\Lambda_{c}^{+}\right)$ (PDG 2002: 2.21 ± 0.15)

Theory predictions: 1.2-1.7

$$\frac{\tau \left(\Xi_{c}^{0}\right)}{\tau \left(\Omega_{c}^{0}\right)} = 1.5 \pm 0.3$$

Theory predictions: >~ 1

24-31 July 2002 Amsterdam

BR measurement of Λ_{c}^{+} decays into states containing Σ Th: Complicated dynamics for charm baryon decays - investigation of the W-exchange contribution - inputs for Ξ_{c}^{+} lifetime from CS modes ◆Exp: low accuracy for many BR \succ FOCUS reconstructs Σ candidates throught the modes: $\Sigma^+ \rightarrow p\pi^0/n\pi^+$ \triangleright Our largest samples: $\Lambda_c^+ \rightarrow \Sigma^+ \pi^+ \pi^-$ and $\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+$ $\Sigma \rightarrow n \pi^{-}$ 700 200 600 175 **Unique previous** 150 500 measurement 125 400 by E687: 100 300 75 $0.53 \pm 0.15 \pm 0.07$ 200 50 Vield=523+34 Yield=1666±60 100 25 Û 2.1 2.3 2.4 2.1 2.2 2.3 2.4 2.2 $\Lambda_{c}^{+} \rightarrow \Sigma^{-} \pi^{+} \pi^{+}$ Γ **FOCUS preliminary:** $= 0.422 \pm 0.033$ $\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}$ (stat error only) 24-31 July 2002 Charmed baryons and HQ 14

spectroscopy from FOCUS

Amsterdam

24-31 July 2002 Amsterdam

Results for $\Lambda_{c}^{+} \rightarrow \Sigma^{+} \mathbf{K}^{+} \mathbf{K}^{-}$ decay

Almost all $\Sigma + K^+ K^-$ throught resonant modes

Upper limit @90%CL for the **non** resonant $\Lambda_c^+ \rightarrow \Sigma^+ K^+ K^-$ decay

(Ref:hep-ex/0206013)

comparison with other measurements

	FOCUS	BELLE	CLEO
$\frac{\Gamma(\Lambda_{c}^{+} \rightarrow \Sigma^{+} K^{+} K^{-})}{\Gamma(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{+} \pi^{-})}$	(7.1±1.1 ±1.1) %	(7.6±0.7 ±0.9) %	(9.5±1.7 ±1.9) %
$\frac{\Gamma(\Lambda_{c}^{+} \to \Sigma^{+} \phi)}{\Gamma(\Lambda_{c}^{+} \to \Sigma^{+} \pi^{+} \pi^{-})}$	(8.7±1.6 ±0.6) %	(8.5±1.2 ±1.2) %	(9.3±3.2 ±2.4) %
$\frac{\Gamma(\Lambda_{c}^{+} \to \Xi^{*}(\Sigma^{+}K^{-})K^{+})}{\Gamma(\Lambda_{c}^{+} \to \Sigma^{+}\pi^{+}\pi^{-})}$	(2.2±0.6 ±0.6) %	(2.3±0.5 ±0.5) %	-
$\frac{\Gamma(\Lambda_{c}^{+} \to \Sigma^{+} K^{+} K^{-})_{NR}}{\Gamma(\Lambda_{c}^{+} \to \Sigma^{+} \pi^{+} \pi^{-})}$	<2.8 % @ 90%CL	<1.8 % @ 90%CL	-

24-31 July 2002 Amsterdam

FOCUS data for **SELEX** decay modes

All charm baryon lifetimes measured with improved accuracy. Published measurements for $\Lambda^+_c, \Xi^+_c, \Xi^0_c$ Preliminary results for Ω^0_c should be published by year end.

BR's. of Λ_c^+ decays containing Σ 's has been presented. First measurement of the CS decay mode $\Sigma^+K^*(892)$ and upper limit for the $\Sigma^-K^+\pi^+$ mode.

With ~20,000 Λ_{c}^{+} + ~1.2 million D^{+,0}, we found no evidence for production of Ξ_{cc}^{+} and Ξ_{cc}^{++} double charm baryons seen by SELEX

24-31 July 2002 Amsterdam

