Charm and Bottom Baryon Masses in the 1/N Expansion ICHEP 2002 Amsterdam

Elizabeth Jenkins

UNIVERSITY OF CALIFORNIA at SAN DIEGO

Large- N_c Baryons

- There is a *bona fide* spin-flavor symmetry for baryons in large-N_c limit of QCD. Large-N_c baryons form irreducible representations of spin-flavor algebra.
- Spin-flavor symmetry broken for baryons with finite N_c by $1/N_c$ corrections. Spin-flavor structure of baryons can be computed in a systematic expansion in $1/N_c$.
- Symmetry relations are obtained at various orders in $1/N_c$ by neglecting subleading $1/N_c$ corrections.

QCD Baryons: $N_c = 3$

- $1/N_c$ expansion useful for QCD baryons with $N_c = 3$. Suppression factors $1/N_c = 1/3$ evident in experimental data
- SU(3) flavor symmetry breaking $\epsilon \sim m_s/\Lambda_{\chi}$ comparable to $1/N_c = 1/3$ and cannot be neglected.

- Heavy quark baryons in HQET: heavy quark spin-flavor symmetry breaking $\Lambda_{\rm QCD}/m_Q$, as well as $1/N_c$ and SU(3) flavor breaking ϵ

(Qqq) Baryon Spin-Flavor Reps

Experimental Status vs. Theory

- All singly charmed baryon masses measured except spin- $\frac{3}{2} \Omega_c^*$. $1/N_c$ analysis successfully predicted $\Xi_c' = 2580.8 \pm 2.1$ MeV. Expt. $\Xi_c' = 2576.5 \pm 2.3$ MeV.
- Compute charm baryon mass hierarchy using $\Omega_c^* = 2770.7 \pm 5.9$ MeV extracted from $\frac{1}{4} \left[(\Sigma_c^* - \Sigma_c) - 2 (\Xi_c^* - \Xi_c') + (\Omega_c^* - \Omega_c) \right] = 0$
- Only Λ⁰_b measured. Can predict all bottom baryon masses to ±8 MeV from charm baryon masses. Many bottom splittings predicted to sub-MeV accuracy.

Spin-flavor Symmetry of HQ Baryons

- $SU(6)_{\ell}$ symmetry in $N_c \to \infty$ limit generators: J^i_{ℓ} , T^a , G^{ia} suppressed by $1/N_c$
- $SU(2)_Q$ symmetry in $m_Q \to \infty$ and $N_c \to \infty$ generator: J_Q^i suppressed by $1/N_c m_Q$.

• For two heavy quark flavors Q = c and Q = b, heavy quark spin-flavor symmetry generalizes to spin-flavor $SU(4)_Q$. Can relate spin-flavor properties of charm and bottom baryons.

$1/N_c$ Operator Expansion for Baryons

$$(\mathcal{O}_m)_{\text{QCD}} = (N_c)^m \sum_{n=0}^{N_c} \left(\frac{1}{N_c}\right)^n c_n \mathcal{O}_n$$

- \mathcal{O}_n all independent *n*-body operators in same spin \otimes flavor representation as QCD operator. Matrix elements of \mathcal{O}_n known.
- Coefficients c_n are unknown, but O(1) at leading order in $1/N_c$
- Order in $1/N_c$ of each operator \mathcal{O}_n known.

HQET Mass Expansion

$$M(H_Q) = m_Q + \bar{\Lambda} - \frac{\lambda_1}{2m_Q} - d_H \frac{\lambda_2}{2m_Q} + \mathcal{O}\left(\frac{1}{m_Q^2}\right)$$
$$\lambda_1 = \langle H_Q(v) | \bar{Q}_v(iD)^2 Q_v | H_Q(v) \rangle$$
$$d_H \lambda_2 = \frac{1}{2} Z_Q \langle H_Q(v) | \bar{Q}_v g G_{\mu\nu} \sigma^{\mu\nu} Q_v | H_Q(v) \rangle$$
$$d_H = -4 \left(J_\ell \cdot J_Q \right)$$

July 2002 – p.8

HQET Baryon Mass in $1/N_c$

$$T_Q = m_Q + \bar{\Lambda}_T - \frac{\lambda_{1T}}{2m_Q} + \cdots$$
$$S_Q = m_Q + \bar{\Lambda}_S - \frac{\lambda_{1S}}{2m_Q} - \frac{4\lambda_{2S}}{2m_Q} + \cdots$$
$$S_Q^* = m_Q + \bar{\Lambda}_S - \frac{\lambda_{1S}}{2m_Q} + \frac{2\lambda_{2S}}{2m_Q} + \cdots$$

$$\bar{\Lambda} = N_c \mathbf{1} + \frac{J_\ell^2}{N_c}, \quad \frac{\lambda_1}{2m_Q} = \frac{1}{m_Q} N_Q + \frac{1}{N_c^2} \frac{1}{m_Q} N_Q J_\ell^2 - d_H \frac{\lambda_2}{2m_Q} = \frac{1}{N_c} \frac{1}{m_Q} (J_\ell \cdot J_Q)$$

(Qqq) Mass Splittings

Operator	Mass Splitting	$1/m_Q$	$1/N_c$	Expt. $Q = c$
1	Λ_Q	*	*	$2284.9\pm0.6~{\rm MeV}$
J_ℓ^2	$rac{1}{3}\left(\Sigma_Q+2\Sigma_Q^* ight)-\Lambda_Q$	1	$1/N_c$	$210.8\pm0.9~\text{MeV}$
$J_\ell \cdot J_Q$	$\Sigma_Q^* - \Sigma_Q$	$1/m_Q$	$1/N_c$	$65.6 \pm 1.1 \; \mathrm{MeV}$

 $* = m_Q + N_c \Lambda$

(Qqq) vs. (qqq)

$$M_{(qqq)} = N_c \mathbf{1} + \frac{1}{N_c} J_{\ell}^2$$
$$M_{(Qqq)} = N_c \mathbf{1} + N_Q m_Q + \frac{1}{N_c} J_{\ell}^2 + \frac{1}{N_c^2 m_Q} N_Q J_{\ell}^2 + \frac{1}{N_c m_Q} (J_{\ell} \cdot J_Q)$$

Operator	Mass Splitting	$1/m_Q$	$1/N_c$	Expt. $Q = c$
N_Q	*	m_Q	1	$1420.2\pm0.7~{ m MeV}$
$N_Q J_\ell^2$		$1/m_Q$	$1/N_c^2$	16 ± 1 MeV

 $* = \Lambda_Q - \frac{1}{4} (5N - \Delta)$ $* = \left[\frac{1}{3} \left(\Sigma_Q + 2\Sigma_Q^*\right) - \Lambda_Q\right] - \frac{2}{3} (\Delta - N)$

July 2002 – p.1

Operator	$1/m_Q$	$1/N_c$	Flavor	Expt. $Q = c$
1	*	*	1	$2407.7\pm0.7~{ m MeV}$
J_ℓ^2	1	$1/N_c$	1	$172.1\pm1.1~{ m MeV}$
T^8	1	$1/N_c$	ϵ	184.2 ± 1.2 MeV
$J^i_\ell G^{i8}$	1	$1/N_c$	ϵ	$36.6 \pm 1.3 \text{ MeV}$
$\left\{T^8,T^8\right\}$	1	$1/N_c$	ϵ^2	$1.8\pm2.4~{ m MeV}$
$(J_\ell \cdot J_Q)$	$1/m_Q$	$1/N_c$	1	$68.1 \pm 1.4 \text{ MeV}$
$(J_\ell \cdot J_Q) T^8$	$1/m_Q$	$1/N_c^2$	ϵ	$3.2\pm1.9~{ m MeV}$
$J_Q^i\left\{T^8, G^{i8}\right\}$	$1/m_Q$	$1/N_c^2$	ϵ^2	$0.0 \pm 1.9 \text{ MeV}$

Operator	Mass Splitting				
1	$rac{1}{3}\left(\Lambda_Q+2\Xi_Q ight)$				
J_ℓ^2					
T^8	$\Xi_Q = \Lambda_Q$				
$J^i_\ell G^{i8}$	$-\frac{5}{8}\left(\Lambda_Q - \Xi_Q\right) + \frac{1}{8}\left[\left(\Sigma_Q + 2\Sigma_Q^*\right) - \frac{1}{3}\left(\Xi_Q' + 2\Xi_Q^*\right) - \frac{2}{3}\left(\Omega_Q + 2\Omega_Q^*\right)\right]$				
$\left\{T^8, T^8\right\}$	$-\frac{1}{2}\left[\frac{1}{3}\left(\Sigma_Q + 2\Sigma_Q^*\right) - \frac{2}{3}\left(\Xi_Q' + 2\Xi_Q^*\right) + \frac{1}{3}\left(\Omega_Q + 2\Omega_Q^*\right)\right]$				
$(J_\ell \cdot J_Q)$	$rac{1}{6}\left[3\left(\Sigma_Q^*-\Sigma_Q ight)+2\left(\Xi_Q^*-\Xi_Q' ight)+rac{1}{3}\left(\Omega_Q^*-\Omega_Q ight) ight]$				
$\left(J_\ell \cdot J_Q\right) T^8$					
$J_Q^i\left\{T^8,G^{i8}\right\}$	$rac{1}{4}\left[\left(\Sigma_Q^*-\Sigma_Q ight)-2\left(\Xi_Q^*-\Xi_Q' ight)+\left(\Omega_Q^*-\Omega_Q ight) ight] ight]$				

Charm Baryon Mass Splittings

July 2002 - p.14

Charm Baryon Mass Splittings

•

Mass Splitting	$1/m_Q$	$1/N_c$	Flavor	Expt. $Q = c$
J_ℓ^2	1	$1/N_c^2$	1	$14.6\pm0.1\%$
T^8	1	$1/N_c$	ϵ	$17.3\pm0.1\%$
$J^i_\ell G^{i8}$	1	$1/N_c^2$	ϵ	$3.2\pm0.1\%$
$\left\{T^8,T^8\right\}$	1	$1/N_c^2$	ϵ^2	$0.1\pm0.2\%$
$J_\ell \cdot J_Q$	$1/m_Q$	$1/N_c^2$	1	$5.4\pm0.1\%$
$(J_\ell \cdot J_Q) T^8$	$1/m_Q$	$1/N_c^3$	ϵ	$0.3\pm0.2\%$

Theory: $1/N_c^2$

Define $\overline{M} = M - m_Q$. Expt. Accuracy = $\frac{|\sum M_i|}{\sum |\overline{M}_i|/2}$ **Expt:** $(14.6 \pm 0.1)\%$

July 2002 - p.1

 ϵ^2 $\overline{N_c^2}$

(qqq) Baryon Mass Hierarchy

Mass Splitting	$1/N_c$	Flavor	Expt.
$\frac{5}{8}(2N + 3\Sigma + \Lambda + 2\Xi) - \frac{1}{10}(4\Delta + 3\Sigma^* + 2\Xi^* + \Omega)$	N_c	1	*
	$1/N_c$	1	
$rac{5}{2}(6N-3\Sigma+\Lambda-4\Xi)-(2\Delta-\Xi^*-\Omega)$	1	ϵ	$-20.21 \pm 0.02\%$
$\frac{1}{4}(N - 3\Sigma + \Lambda + \Xi)$	$1/N_c$	ϵ	$5.94\pm0.01\%$
$\frac{1}{2}(-2N-9\Sigma+3\Lambda+8\Xi)+(2\Delta-\Xi^*-\Omega)$	$1/N_{c}^{2}$	ϵ	$1.11\pm0.02\%$
$\frac{5}{4}(2N - \Sigma - 3\Lambda + 2\Xi) - \frac{1}{7}(4\Delta - 5\Sigma^* - 2\Xi^* + 3\Omega)$	$1/N_c$	ϵ^2	$0.37\pm0.01\%$
$\frac{1}{2}(2N - \Sigma - 3\Lambda + 2\Xi) - \frac{1}{7}(4\Delta - 5\Sigma^* - 2\Xi^* + 3\Omega)$	$1/N_{c}^{2}$	ϵ^2	$0.17\pm0.02\%$
	$1/N_{c}^{2}$	ϵ^3	

July 2002 - p.1

(qqq) Baryon Mass Hierarchy

Conclusions

- 1/N_c expansion useful and predictive for QCD baryons
- 1/N_c hierarchy evident in (qqq) and (Qqq) baryon masses.
- $1/N_c$ expansion gives a quantitative understanding of spin-flavor symmetry breaking for baryons. Intricate pattern of spin-flavor breaking since $1/N_c$, SU(3)breaking, and heavy quark symmetry breaking (Λ/m_Q) for Q = c are all comparable.