Topics in Meson Spectroscopy

•S-wave mesons below 1 GeV

Kaminski, Lesniak and Rybicki [ABS288] hep-ph/0109268 Van Beveren & Rupp [ABS22] hep-ph/0207022 Furman and Lesniak [ABS284] hep-ph/0203255 •Heavy Quarkonium •Exotic Hybrids, present & future

> **Steve Godfrey** *Carleton University/DESY* **godfrey@physics.carleton.ca**

S-wave Mesons below 1 GeV

For a recent review see: Close & Tornqvist hep-ph/0204205

The phenomenology of 0⁺⁺ sector reflects the many different components of the Fock space: $q\overline{q}$ $q\overline{q}\overline{q}$ $qq\overline{q}\overline{q}$ Glueballs MM molecules Threshold effects

•So it's a real challenge to understand this sector

- •2 steps
 - •Analyze the raw data
 - •Interpret in terms of underlying models

Information on low energy S-wave $\pi\pi$ scattering from $p^-p \rightarrow p^+p^-n$ CERN-Munich experiment [NP B75, 189 (1974)] CERN-Cracow-Munich [NP B150, 301 (1979); B151, 46 (1979)] $p^-p \rightarrow p^0p^0n$ Brookhaven E852 [PR D64, 07003 (2001)]

•Experiments provide fewer observables than needed to unambiguously describe partial waves

Therefore make assumptions in PWA

- •I gnore role of nucleon spin
- •I gnore a₁ exchange amplitude

Results in ambiguities in extraction of phase shifts from PWA

•Kaminski, Lesniak and Rybicki studied this problem

```
[ABS288: hep-ph/0109268]
```

to constrain allowed solutions

Apply unitarity

•Non-observation of inelastic scattering below the $f_0(980)$

•Related $\pi^+\pi^-$ to $\pi^0\pi^0$ amplitudes

Pseudoscalar (circles) and pseudovector (squares) amplitudes

Conclude that a_1 contributions are significantly different from zero (ratio is 0.2-0.3)

• How to describe these phase shifts in terms of true resonances or from the dynamics between KK, K π , $\pi\pi$?

Van Beveren & Rupp hep-ph/0207022 [ABS22]

- Must look at the meson-meson scattering
 Extract the phase shifts <u>not</u> resonance positions
- •Need multichannel approach which includes resonances (from constituent qq channels) meson-meson interactions

(An interesting and important consequence is that the pole parameters are dependent on the coupling strengths)

Furman and Lesniak, hep-ph/0203255 [ABS284]

Coupled channel model of two a_0 resonances decaying into $\pi\eta$, and KK mesons using Lippman-Schwinger equation:

$$\langle \mathbf{p} \,|\, T \,|\, \mathbf{q} \,\rangle = \langle \mathbf{p} \,|\, V \,|\, \mathbf{q} \,\rangle + \int \frac{d^3s}{(2\pi)^3} \langle \mathbf{p} \,|\, V \,|\, \mathbf{s} \,\rangle \langle \,\mathbf{s} \,|\, G \,|\, \mathbf{s} \,\rangle \langle \,\mathbf{s} \,|\, T \,|\, \mathbf{q} \,\rangle$$

where T,V, and G are 2 x 2 matrices

Find significantly different widths in the two channels in agreement with E852 and Crystal Barrel (also used to describe I =0 sector)

•These multichannel approaches Furman & Lesniak hep-ph/0203255 [ABS284] Van Beveren & Rupp hep-ph/0207022 [ABS22] (and others)

obtain a good description of the low lying S-wave spectrum

My impression is that workers in the field have come to a consensus on the general description if not the details.

Heavy Quarkonium

•Recent interest due to

•CLEO/CESR run on Y(3S)

•Belle observation of $\eta_c(2S)$ in B decay

•Lattice QCD starting to make quantitative predictions for the hadron mass spectrum

Need to test Lattice calculations against experiment

ICHEP'02

- Spin triplet states have been observed
- Few spin singlet states have been seen
- Wide variation in splittings
- Their observation would test the various Calculations
- •Expect many of these states to be found in
 - The recent CESR/CLEO run
 - B-decays at B-factories
 - At future CLEO-c/CESR-c

- CESR/CLEO has just completed a high statistics run at the Y(3S)
- ^{1¹}D₂ •Expect very rich spectroscopy
 - Estimate the radiative widths and BR using quark model

Production of the $\mathbf{h}_b(nS)$ states

S.G + J. Rosner, Phys Rev D64, 074011 (2001)

Proceeds via magnetic dipole (M1) transitions:

 $Y(nS) \rightarrow \eta(n'S) + \gamma$

$$\Gamma(^{3}S_{1} \rightarrow S_{0} + \boldsymbol{g}) = \frac{4}{3}\boldsymbol{a} \frac{e_{Q}^{2}}{m_{Q}^{2}} \left| \left\langle f \left| j_{0}(kr/2) \right| i \right\rangle \right|^{2} \boldsymbol{w}^{3}$$

•Hindered transitions have large phase space •Relativistic corrections resulting in differences in ${}^{3}S_{1}$ and ${}^{1}S_{0}$ wavefunctions due to hyperfine interaction

	Transition	BR (10 ⁻⁴)
Y(3S)		
$(\Gamma_{tot}=52.5 \text{ keV})$	$\rightarrow 3^1 S_0$	0.10
	$\rightarrow 2^{1}S_{0}$	4.7
	$\rightarrow 1^1 S_0$	25
Y(2S)	$\rightarrow 2^1 S_0$	0.21
$(\Gamma_{tot}=44 \text{ keV})$	$\rightarrow 1^1 S_0$	13
Y(1S)	$\rightarrow 1^1 S_0$	2.2
$(\Gamma_{tot}=26.3 \text{ keV})$		

•Expect substantial rate to produce $\eta_{\rm b}$'s •Also Y(3S) $\rightarrow h_{\rm b}({}^{1}\mathrm{P}_{1}) \pi\pi \rightarrow \eta_{\rm b} + \gamma + \pi\pi$ BR=0.1-1% BR = 50%

[Kuang & Yan PRD24, 2874 (1981); Voloshin Yad Fiz 43, 1571 (1986)]

Production of the singlet P-wave states

S.G + J. Rosner, PR D66 in press

Need branching ratios and hence partial widths

$$\Gamma[\mathbf{h}(2^{1}S_{0}) \rightarrow h_{b}(1^{1}P_{1}) + \mathbf{g}] = \frac{4}{3}\mathbf{a}e_{Q}^{2}|\langle {}^{1}P_{1}|r|{}^{1}S_{0}\rangle|^{2}\mathbf{w}^{3} = 2.3 \text{ keV}$$

$$\Gamma[h_{b}(1^{1}P_{1}) \rightarrow \mathbf{h}_{b}(1^{1}S_{0}) + \mathbf{g}] = \frac{4}{9}\mathbf{a}e_{Q}^{2}|\langle {}^{1}S_{0}|r|{}^{1}P_{1}\rangle|^{2}\mathbf{w}^{3} = 37 \text{ keV}$$

$$\Gamma[\mathbf{h}_{b}(2^{1}S_{0}) \rightarrow gg] = \frac{27\mathbf{p}}{5(\mathbf{p}^{2} - 9)\mathbf{a}_{S}} \times \Gamma[\Upsilon(2^{3}S_{1}) \rightarrow ggg] = 4.1 \pm 0.7 \text{ MeV}$$

BR($3^{3}S_{1} \gamma \rightarrow 2^{1}S_{0} \gamma$)=4.7 x 10⁻⁴ and BR($2^{1}S_{0} \gamma \rightarrow 1^{1}P_{1} \gamma$)=5.7x 10⁻⁵ BR[Y(3S) $\rightarrow 2^{1}S_{0} \gamma \rightarrow 1^{1}P_{1} \gamma$] = 2.6 x 10⁻⁷ \Rightarrow 0.3 events/10⁶Y(3S)'s Similarly

BR[$\psi(2S) \rightarrow 2^1S_0 \gamma \rightarrow 1^1P_1\gamma$] = 10⁻⁶ \Rightarrow 1 event /10⁶Y(3S)'s

(A challenge for the experimentalists!)

A more promising approach utilizes: $BR[Y(3S) \rightarrow \pi \ 1^1P_1] = 0.1\%$

$$\Gamma[h_b(1^1P_1) \to \mathbf{h}_b(1^1S_0) + \mathbf{g}] = \frac{4}{9} \mathbf{a} e_Q^2 |\langle {}^1S_0 | r | {}^1P_1 \rangle |^2 \mathbf{w}^3 = 37 \text{ keV}$$

$$\Gamma[h_b(1^1P_1) \to ggg] = \frac{5}{2n_f} \Gamma[\mathbf{c}_{b1}(1^3P_1) \to q\bar{q}g] = 50.8 \text{ keV}$$

 $BR[Y(3S) \rightarrow \pi \ 1^{1}P_{1} \rightarrow 1^{1}S_{0}\gamma] = 4 \ x \ 10^{-4} \Rightarrow 400 \text{ events}/10^{6} \ Y(3S)'s$

Similarly

BR[$\psi(2S) \rightarrow \pi 1^{1}P_{1} \rightarrow 1^{1}S_{0}\gamma$] = 3.8 x 10⁻⁴ $\Rightarrow \sim 400 \text{ event }/10^{6}\psi(2S)$'s Expect $\sim 400 \text{ events!}$

Production of the D-wave states

- •By direct scans in e^+e^- to produce 3D_1
- •In e.m. cascades: $Y(3S) \rightarrow \gamma \chi'_b \rightarrow \gamma \gamma ^3D_J$
- •Some 4γ cascades with observable # of events/10⁶ Y(3S)'s:

Cascade	Events
$3^{3}S_{1} \rightarrow 2^{3}P_{2} \rightarrow 1^{3}D_{3} \rightarrow 1^{3}P_{2} \rightarrow 1^{3}S_{1}$	7.8
$3^{3}S_{1} \rightarrow 2^{3}P_{2} \rightarrow 1^{3}D_{2} \rightarrow 1^{3}P_{1} \rightarrow 1^{3}S_{1}$	2.7
$3^{3}S_{1} \rightarrow 2^{3}P_{1} \rightarrow 1^{3}D_{2} \rightarrow 1^{3}P_{1} \rightarrow 1^{3}S_{1}$	20
$3^{3}S_{1} \rightarrow 2^{3}P_{1} \rightarrow 1^{3}D_{1} \rightarrow 1^{3}P_{1} \rightarrow 1^{3}S_{1}$	3.3

S.G + J. Rosner, Phys Rev D64, 097501 (2001)

- Expect ~38 events /10⁶ Y(3S) via ³D_J
- •The e⁺e⁻ final states leads to less background
- $\mu^+\mu^-$ final states also contribute if μ 's are identified

In the CESR run just completed expect to see evidence for the

 $2^{1}S_{0}, 1^{1}S_{0}, 1^{1}P_{1}, 1^{3}D_{2}$

And maybe the

 $3^{1}S_{0}$, $1^{3}D_{1}$ and $1^{3}D_{3}$

Would represent a significant increase in our knowledge of quarkonium and provide an important benchmark against which to measure the results of lattice QCD

Suzuki proposed to search for the h_c in $B \rightarrow h_c X$ [hep-ph/0204043] [see also Eichten Lane & Quigg hep-ph/0206018; Gu hep-ph/0206002]

Other related work by Hao Liu & Chao hep-ph/0206226

S. Godfrey, Carleton University/DESY

ICHEP'02

Exotic Hybrids

Quarks move in effective potentials of adiabatically varying state of flux tubes
Lowest excited adiabatic surface corresponds to transverse excitations

Lowest mass hybrids at ~1.9 GeV Doubly degenerate: J^{PC} = 0⁺⁻ 0⁻⁺ 1⁺⁻ 1⁻⁺ 2⁺⁻ 2⁻⁺ 1⁺⁺ 1⁻⁻

transverse phonon modes

ground state

 π/r

ICHEP'02

1 GeV mass difference (p/r)

Normal mesons

An Exotic Signal in E852

Correlation of Phase & Intensity

ICHEP'02

What about the future?

Hall D at Jefferson Lab

"Searching for Exotic Gluonic Excitations"

Photoproduction:

Proposal to upgrade CEBAF to 12 GeV Produce photons through coherent bremsstrahlung

ICHEP'02

Construction start – 2004

S. Godfrey, Carleton University/DESY

24

Summary

- S-wave $\pi\pi$ scattering far from a closed book but definite progress in our understanding
- Expect great progress in heavy quarkonium spectroscopy
- Confirmation and mapping out of hybrid-meson spectrum is one of the most important qualitative question facing hadron spectroscopy
- Theory and Experiment go hand in hand to fully understand Soft QCD

