Radiative J/ψ Decays and Searches for Glueballs

Shan JIN Institute of High Energy Physics (IHEP) Beijing, P.R.China jins@mail.ihep.ac.cn

> July 24-31, 2002 ICHEP2002, Amsterdam

Outline

- PWA of $J/\psi \rightarrow \gamma K \overline{K}$, $\gamma \pi^+ \pi^-$ at BES II
- Observation of an enhancement near $p\overline{p}$ threshold in $J/\psi \to \gamma p\overline{p}$ at BESII
- Anti-search for glueball candidates in two photon collisions at CLEO and L3

Summary

PWA of $J/\psi \rightarrow \gamma K \overline{K}$, $\gamma \pi^{+} \pi^{-}$ **at BES II**

Introduction

QCD predicts the existence of glueballs.

 Radiative J/ψ decays are suggested as promising modes of glueball searches.

Lattice QCD: The ground scalar glueball should be in the mass range 1.5 – 1.7 GeV.

• Long history of uncertainty on $f_0(1710)$

Process	Collaboration	M(MeV)	Γ(MeV)	$J^{_{PC}}$
$J/\psi \rightarrow \gamma\eta\eta$	CBAL (82)	1640 ± 50	220 ⁺¹⁰⁰ -70	2++
$\pi^{-}p \rightarrow K_{s}^{0}K_{s}^{0}n$	BNL (82)	1771_{-53}^{+77}	200^{+156}_{-9}	0++
$\pi^- N \rightarrow K_s^0 K_s^0 n$	FNAL (84)	1742±15	57 ± 38	8 81
$\pi^- p \rightarrow \eta \eta N$	GAMS (86)	1755±8	< 50	0++
$J/\psi \rightarrow \gamma K^+ K^-$	MARKIII (87)	1720 ± 14	130 ± 20	2++
$J/\psi \to \gamma K \overline{K} \\ \gamma \pi^+ \pi^-$	DM2 (88)	1707 ± 10 1698 ± 15	166±33 136±28	
$pp \rightarrow ppK^{+}K^{-}$ $ppK^{0}_{s}K^{0}_{s}$	WA76 (89)	1713 ± 10 1706 ± 10	181±30 104±30	2++
$J/\psi \to \gamma K \overline{K}$	MARKELL (91)	1710 ± 20	186±30	0++
$n\overline{n} \rightarrow \pi^0 nn$	E760 (93)	1748 ± 10	264 ± 25	$(even)^{++}$
$\begin{array}{c} pp \rightarrow \pi \eta\eta \\ J/\psi \rightarrow \gamma 4\pi \end{array}$	MARKIII data D.Bugg et al. (95)	1750 ±15	160±40	0++
$J/\psi \to \gamma K^+ K^-$	BES (96)	$1696 \pm 5^{+9}_{-34}$ $1781 \pm 8^{+10}_{-31}$	$103 \pm 18^{+30}_{-11}$ $85 \pm 24^{+22}_{-10}$	2++ 0++
$J/\psi\to\gamma K\overline{K}$	MARKIII data W.Dunwoodie(97)	$1704 \begin{array}{c} +16 \\ -23 \end{array}$	124 ⁺⁵² -44	0++
$pp \to p_f(K^+K^-)p_s$	WA1 02 (99)	1730 ±15	100 ± 25	0++
$pp \rightarrow p_f(\pi^+\pi^-)p_s$	Wa1 02 (99)	1750 ± 25	105±34	0++
$pp \rightarrow K^+ K^- \pi^+ \pi^-$	Wa102 (99)	1710 ± 16	126 ± 24	0++
$pp \rightarrow p_f(K^+K^-)p_s$	WA76 (99)	1710 ± 25	105±34	0++
$pp \rightarrow p_f \eta \eta p_s$	WA1 02 (00)	1698 ± 18	120 ± 26	0++
$J/\psi \rightarrow \gamma 4\pi$	BES (00)	$1740 + \frac{20}{-25}$	135 ⁺⁴⁰	0++

PWA of $J/\psi \rightarrow \gamma K^+K^-$ and $\gamma K^0_S K^0_S$.

• $J/\psi \rightarrow \gamma KK$ is a very important channel to investigate the $f_0(1710)$

Global fit and bin-by-bin fit are performed

BES II Preliminary

 $\frac{\text{Preliminary Results}}{(J/\psi \rightarrow \gamma K\overline{K})}$

- Clear $f'_2(1525)$ signal. • Evidence of $f_2(1270)$.
- 0⁺⁺ is dominant in 1.7GeV mass region • Masses and Widths (statistical error only): $f'_{2}(1525) \text{ M} = 1518 \pm 6 \text{ MeV}, \ \Gamma = 84^{+28}_{-24} \text{ MeV}.$ $f_{0}(1710) \text{ M} = 1703^{+8}_{-10} \text{ MeV}, \ \Gamma = 163^{+27}_{-22} \text{ MeV}.$

PWA of $J/\psi \rightarrow \gamma \pi^+ \pi^-$.

BESII Preliminary

$\frac{\text{Preliminary Results}}{(J/\psi \rightarrow \gamma \pi^+ \pi^-)}$

- well known f₂(1270)
- two 0⁺⁺ at around 1.4 and 1.7 GeV mass regions, for f₀(1710):

$$\frac{\Gamma(\pi\pi)}{\Gamma(K\overline{K})} \sim 30\%$$

Observation of an enhancement near $p\overline{p}$ threshold in $J/\psi \rightarrow \gamma p\overline{p}$ at BESII

Event Selection

- 2 good charged tracks
- ≥1γ (isolated from charged tracks)
 Particle ID
- 4C-fits

 $-CL(\gamma p\overline{p}) > 0.05$ $-CL(\gamma p\overline{p}) > CL(\gamma K^{+}K^{-})$

pp masses for selected events

Besides η_c peak, there is a clear enhancement near threshold.

Main backgrounds remained after selection for the mass peak near threshold(almost equal contribution): J/ $\psi \rightarrow \gamma p \overline{p}$ phase space J/ $\psi \rightarrow \pi^0 p \overline{p}$

No clear enhancement near threshold

S-wave Breit-Wigner function

If the enhancement is treated as a resonance:

BW
$$\propto \frac{M_0\Gamma_0 \bullet (q/q_0)}{(M^2 - M_0^2)^2 + (M_0\Gamma_0 \bullet (q/q_0))^2}$$

q = daughter momentum $q_{a} = daughter momentum (a) peak$

Weight the BW function with mass-dependent acceptance

BW fit to the structure near threshold

- Background shape from $J/\psi \rightarrow \pi^0 p \overline{p}$ MC
- Preliminary results: (statistical error only) M = (1896 ± 2)MeV/c² Γ = (57 ± 8)Mev/c²
 Statistical significance:

~16σ

What is it?

 $p\overline{p}$ molecular state? 0^{-+} glueball? \rightarrow why so close to $2m_n$? **Dynamical effect?** \rightarrow no evidence in $\gamma \Lambda \overline{\Lambda}$ or $\gamma \Xi^+ \Xi^-$????

>>> Searches for other decay modes

Anti-search for glueball candidates in two photon collisions at CLEO and L3

• $\Gamma_{\gamma\gamma}$ of a glueball is expected to be very small.

A state which is observed in a gluon rich environment but not in two photon fusion has the typical signature of a glueball

• Both experiments studied $\gamma\gamma \rightarrow K_{s}^{0}K_{s}^{0}$

Results from L3

- The $f'_2(1525)$ tensor meson $\Gamma_{\gamma\gamma}(f'_2(1525)) \bullet B(f'_2(1525) \to K\overline{K})$ $= 76 \pm 6 \pm 11 \text{ eV}$
- The 2230 mass region $\Gamma_{\gamma\gamma}(\xi(2230)) \bullet B(\xi(2230) \rightarrow K_S^0 K_S^0)$ $< 1.4 eV \quad (95\% C.L.)$ (assume $J = 2, \lambda = 2$)

Results from L3 (continued)

The 1750 MeV mass region

$$\iff$$
 (J = 2, λ = 2) wave dominant

 $\Gamma_{\gamma\gamma}(f_2(1750)) \bullet B(f_2(1750) \to K\overline{K})$ = 49±11±13 eV

Results from CLEO

Assume J=2:

 $\Gamma_{\gamma\gamma}(\xi(2230)) \bullet B(\xi(2230) \to K_S^0 K_S^0)$ <1.1eV (95%C.L.)

Summary

- PWA of BES II 58M J/ ψ data show strong production of $f_0(1710)$ in J/ $\psi \rightarrow \gamma K\overline{K}, \gamma \pi^+ \pi^-$ with $\Gamma(\pi \pi)/\Gamma(K\overline{K}) \sim 30\%$.
- A significant near-threshold $p\overline{p}$ enhancement is observed in $J/\psi \rightarrow \gamma p\overline{p}$ at BES II. If treated as a resonance: $M = (1896 \pm 2)MeV, \quad \Gamma = (57 \pm 8)MeV$

• In $\gamma\gamma \rightarrow K_{s}^{0}K_{s}^{0}$ at L3 and CLEO:

$$\begin{split} \Gamma_{\gamma\gamma}(f_{2}(1750)) \bullet B(f_{2}(1750) \to K\overline{K}) &= (49 \pm 11 \pm 13) eV \end{split} \tag{L3} \\ \Gamma_{\gamma\gamma}(\xi(2230)) \bullet B(\xi(2230) \to K_{S}^{0}K_{S}^{0}) < 1.4 eV \qquad (95\% C.L.) \qquad (L3) \\ \Gamma_{\gamma\gamma}(\xi(2230)) \bullet B(\xi(2230) \to K_{S}^{0}K_{S}^{0}) < 1.1 eV \qquad (95\% C.L.) \qquad (CLEO) \end{split}$$

Status of ξ(2230) at BES II

 So far, no clear signal of ξ(2230) has been observed.

 All possible problems are still being checked.