Tomasz Skwarnicki, Syracuse U. ICHEP, Amsterdam July,2002

Bottomonium studies via Y(3S) decays

First observation of $\Upsilon(1D)$

Tomasz Skwarnicki

Representing the CLEO collaboration

Onia

FORCES			Sys- tem	(v/c) ²	Ground	triplet state 1 ³ S ₁	Number of states below dissociation energy						
binding	decay				Name	Г (MeV)	n ³ S ₁	all					
POSITRONIUM													
EM	EM		e+e-	~0.0	Ortho-	5 10 ⁻¹⁵	2	8					
QUARKONIUM													
	S		uū,dd	~1.0	ρ	150.00	0	0					
S	Т		ss	~0.8	φ	4.40	"1"	"2"					
Т	R O N G		cc	~0.25	ψ	0.09	2	8					
R O N		E M	bb	~0.08	Ŷ	0.05	3	30					
G	weak		tt	<0.01		3000.00	0	0					

- Heavy quarkonia hold a promise of playing a similar role for QCD as positronium did for QED
 - Upsilons are the most non-relativistic (i.e. simplest) states among all long-lived quarkonia states
 - The Upsilon system also has the largest number of stable states
- → Upsilons play a special role in probing the strong interactions (tests of lattice QCD, potential models)

Upsilon **States**

Only 9 out of 30 narrow states observed so far

No spin-singlet states observed

No new states observed in 19 years

Tomasz Skwarnicki, Syracuse U. ICHEP, Amsterdam July,2002 **CLEO-III Detector** COIL (1.5T) Csl RICH Csl DRIFT CHAMBER Si IR Quads

- EM calorimeter -Essential for this work
 - ~8000 CsI(TI) crystals + photo-diodes

- First crystal calorimeter in magnetic field
- Changes since CLEO-II:
 - Low-mass DR endplate!
 - Re-stacked endcaps, moved away
 - New readout electronics
 - Some light loss due to the deteriorating glue used to attach the photo-diodes

- About 10-fold increase over the CLEO-II statistics
- About 4-times more Y(3S) data than analyzed by CUSB + 2.5-4.5 times higher efficiency for the final states analyzed here
- The Y(3S) data already processed off-line
- We will take more Y data before lowering the beam energy to the charm threshold region next year (→CLEO-c)

Search for η_b(1¹S₀)
Test potential model predictions for Γ_{M1}

Models from the compilation by Godfrey&Rosner PR D64, 074011 (2001) [scaled here by phase-space]

$$\Gamma_{\rm M1} \propto \frac{e_b^2}{m_b^2} \left| \left\langle n_f L \left| n_i L \right\rangle \right|^2 E_g^3 \right|$$

DIRECT $n_i = n_f$ $\langle n_f L | n_i L \rangle = 1 \quad E_g^3$ -tiny

hopeless for $b\overline{b}$ HINDERED $n_i \neq n_f$ $\langle n_f L | n_i L \rangle \approx 0$ E_g^{3} -large difficult to predict

Most of the calculations are ruled out!

10200

10000

9800

9600

9400

Mass (MeV)

3¹S₀ <u>3³S</u>1

2¹S₀

1¹S₀

 $\Delta n=0$

 $\Delta n = 1$

2³S.

 $\Delta n=1$

2³P

∆n=0

Tomasz Skwarnicki, Syracuse U. ICHEP, Amsterdam July,2002 ICHEP ABS949, CLEO CONF 02-07 **Exclusive 2γ-cascades**

- $\gamma\gamma\ell^+\ell^-$ final states
 - No π^0 backgrounds from gluonic bb annihilation
- Low product branching ratio (a few 10⁻⁴)
 - Sensitivity to hadronic widths of triplet P-states:

 $B(\mathsf{P}\mapsto\gamma\mathsf{S})=\Gamma_{\mathsf{E1}}/(\Gamma_{\mathsf{E1}}+\Gamma_{\mathsf{had}})$

$$3S \mapsto \gamma 1P$$
 is a $\Delta n=2$ transition (rare)

$$\Gamma_{\rm E1} \propto e_b^2 \left| \left\langle n_f L_f \left| r \right| n_i L_i \right\rangle \right|^2 E_g^3$$

much larger than Γ_{M1} , since no suppression by $1/m_b^2$ $L_f = L_i \pm 1$ as $\Delta n = n_i - n_f$ increases

 $\langle n_f L_f | r | n_i L_i \rangle$ decreases and Γ_{E1} becomes more difficult to predict

- E_{J=2} = 86.09±0.30±0.29 MeV •

• E_{J=1} = 99.08±0.17±0.34 MeV

Efficiency (μμ+ee)/2 ~32%

Energy resolution from the fit: 4.6±0.2 MeV @ 100 MeV

- Energy calibrated to ±0.34% with the photonrecoil mass and known Y(nS) masses
 - More precise than previous measurements
 - Consistent with CUSB and CLEO-II results

Tomasz Skwarnicki, Syracuse U. ICHEP, Amsterdam July,2002 13 Comparison of the measured E1 transition rates with the potential models

	< 2P	r 3S >	<1H	P r 2S >	< 1P	r 3S >	< 1.5	S r 2P >
							< 25	$\overline{S r 2P} > $
	GeV^{-1}		GeV^{-1}		GeV^{-1}			
DATA	$2.7{\pm}0.2$		$1.9{\pm}0.2$		0.050 ± 0.006		0.096 ± 0.005	
	World A		Average			This measurement		
Model	NR	rel	NR	rel	NR	rel	NR	rel
Kwong,Rosner [13]	2.7		1.6		0.023		0.13	
Fulcher [14]	2.6		1.6		0.023		0.13	
Büchmuller et al.[15]	2.7		1.6		0.010		0.12	
Moxhay,Rosner [16]	2.7	2.7	1.6	1.6	0.024	0.044	0.13	0.15
Gupta et al.[17]	2.6		1.6		0.040		0.11	
Gupta et al.[18]	2.6		1.6		0.010		0.12	
Fulcher [19]	2.6		1.6		0.018		0.11	
Danghighian et al.[20]	2.8	2.5	1.7	1.3	0.024	0.037	0.13	0.10
McClary,Byers [21]	2.6	2.5	1.7	1.6			0.15	0.13
Eichten et al.[22]	2.6		1.7		0.110		0.15	
Grotch et al.[23]	2.7	2.5	1.7	1.5	0.011	0.061	0.13	0.19

Potential models:

- easily reproduce the large E1 matrix elements
- have trouble predicting small elements (see $\Upsilon(3S) \mapsto \gamma \chi_b(1P_J) \quad \Delta n=2$)

Searches for π^0 , η transitions

- Also could contribute to $\gamma\gamma\ell^+\ell^-$ events
- Suppress photon transitions
- Look at Μγγ
- No signal found
- At 90% C.L.
 - $-B(\Upsilon(3S) \mapsto \pi^0 \Upsilon(1S)) < 0.17 \ 10^{-3}$
 - $-B(\Upsilon(3S) \mapsto \eta \Upsilon(1S)) < 0.9 \ 10^{-3}$
 - $-B(\Upsilon(3S) \mapsto \pi^0 \Upsilon(2S)) < 1.2 \ 10^{-3}$

Tomasz Skwarnicki, Syracuse U. ICHEP, Amsterdam July,2002 18

Selection of
$$\Upsilon(1D)$$
 events

$$\boldsymbol{c}_{1D}^{2} = \min_{\mathbf{M}_{1D}, \mathbf{J}_{2P}, \mathbf{J}_{1P}} \sum_{i=1}^{4} \left(\frac{\mathbf{E}_{g_{i}} - \mathbf{E}_{g_{i}}^{\text{expected}} \left(\mathbf{M}_{1D}, \mathbf{J}_{2P}, \mathbf{J}_{1P} \right)}{\boldsymbol{s}(\mathbf{E}_{g_{i}})} \right)^{2}$$

< ²

- Implements constraints to the well known masses: M_{3S}, M_{2PJ}, M_{1PJ}, M_{1S}
- In addition to χ²_{1D} value also obtain "most likely" mass of Υ(1D) for each event
- To suppress cascades through the $\Upsilon(2S)$ calculate: $\int_{2}^{4} \left(E_{gi} - E_{gi}^{expected} \left(M_{2S}, J_{2P}, J_{1P} \right) \right)^{2}$

$$\mathbf{c}_{2S}^{2} = \min_{\mathbf{J}_{2P}, \mathbf{J}_{1P}} \sum_{i=1}^{4} \left(\frac{\mathbf{E}_{gi} - \mathbf{E}_{gi}}{\mathbf{S}(\mathbf{E}_{gi})} \right)$$
$$\mathbf{c}_{2S}^{2} > 12$$

Tomasz Skwarnicki, Syracuse U.

Inclusive $\Upsilon(1D)$ signal

- No background source can produce as narrow a peak as observed in the data
- For $\chi^2_{1D} < 10$:
 - 44 events in the data
 - 1.6-3.0 events due to $\Upsilon(2S)$
 - 0.8 events due to $\Upsilon(3S) \mapsto \pi^0 \pi^0 \Upsilon(1S)$
 - 1.8-3.7 of other backgrounds (e.g. radiative Bhabhas and μ– pairs) estimated from the tail of the distribution
 - Total background 10-14%

50

10100

- Recoil mass against the two lowest energy photons:
 - Worse resolution
 - Simple shape

Most likely mass (constrained to 2P,1P masses):

10140

m(1D) (MeV)

Better resolution

10120

Satellite peaks due to wrong J_{2P}, J_{1P} minimizing the χ^2_{1D}

10160

σ=3.1 MeV

10200

Y(1D) mass analysis

• Single-peak fits:

Y(1D) mass analysis

• Double-peak fits:

Y(1D) mass analysis

- No compelling evidence for more than one state
- Significance of the peak at 10162: 6.8s
- Mass averaged over different fits: 10162.2 ±1.6 MeV
- Inconsistent with the $\Upsilon(1D_3)$
- Could be the $\Upsilon(1D_2)$ or $\Upsilon(1D_1)$
- The theory predicts the rate ratio: $\Upsilon(1D_2)/\Upsilon(1D_1)=6$
- Thus, the $\Upsilon(1D_2)$ is the most likely interpretation

Summary

- No evidence for hindered M1 transitions $\Upsilon(3S) \mapsto gh_{b}(1S)$ found in contradiction with many theoretical estimates of the transition width
- Much improved results for:
 - $\operatorname{B}(\Upsilon(3S) \mapsto \operatorname{gc}_{\operatorname{b}}(1P_{2,1}) \mapsto \operatorname{ggr}(1S))$
 - $\operatorname{B}(\Upsilon(3S) \mapsto \operatorname{gc}_{\operatorname{b}}(\operatorname{2P}_{2,1,0}) \mapsto \operatorname{ggr}(2,1S))$
 - B(Ƴ(3S) ↦ p⁰p⁰Ƴ(1S))
 - Upper limits on:
 - B(Υ(3S) → p⁰Υ(1S))
 - B(𝔅(3S) → h𝔅(1S))
 - B(Y(3S) → p⁰Y(2S))

Summary

First observation of Y(1D):

- Signal is 9.7s significant
- Inclusive (i.e. sum over all J) product branching ratio for production in ggg l⁺l⁻ (3.3±0.6±0.5) 10⁻⁵
- In agreement with the prediction by Godfrey&Rosner (3.8 10⁻⁵)
- Evidence for a state at 10162.2 ±1.6 MeV
- Likely interpretation: Y(1D₂)
- The mass is consistent with the predictions of some of the potential models
- First new narrow bb state observed in 19 years
- The only long-lived L=2 meson we know

- No efficiency for the $\Upsilon(1D_3)$ at 10162 MeV because of the χ^2_{2S} >12 cut
- However the χ^2_{2S} >12 cut does not change the 10162 peak amplitude much

(Extra Slide) Probing J_{1D} via J_{2P} , J_{1P}

 The peak at 10162 MeV has a large fraction of J_{2P}=1, J_{1P}=1 events, as expected for J_{1D}=1 or 2.

(Extra Slide) Probing J_{1D} via J_{2P} , J_{1P}

 The peak at 10174 MeV has a too small a fraction of J_{2P}=2, J_{1P} =2 events, to be J_{1D}=3 (in fact a few such events expected due to the satellite from J_{1D}=2 at 10162 MeV)

